Martingale Transforms in a Banach Space

Toshitada Shintani*
(Received November 20, 1995)

Abstract. If \(f=(f_1,f_2,\cdots)\) is a real \(L^1\)-bounded martingale then \(\sum_{n=1}^{\infty} |f_{n+1}-f_n| < \infty \) a.e. The same result holds for \(X\)-valued martingales, where \(X\) is a Banach space, provided \(X\) has the Radon-Nikodým property. Using this the martingale transform \(g\) of \(f\) by \(v\) converges almost everywhere without assuming that \(v\) is predictable.

1. Notations. Let \((\Omega,\mathcal{A},P)\) be a probability space and \(\alpha_1, \alpha_2, \cdots\) a nondecreasing sequence of sub-\(\sigma\)-fields of \(\alpha\). Let \(X\) be a Banach space with norm \(\|\cdot\|\) and the Radon-Nikodým property. Let \(f=(f_1,f_2,\cdots)\) be an \(X\)-valued martingale with norm \(\|f\|_1=\text{sup} E|f_t|<\infty\). Let \(v=(v_1,v_2,\cdots)\) be a real-valued predictable sequence, that is, \(v_k:\Omega\to\mathbb{R}\) is \(\alpha_k\)-measurable, \(k\geq 1\). Then \(g=(g_1,g_2,\cdots)\), defined by \(g_n=\sum_{k=1}^{n} v_k (f_{k+1}-f_k)\) with \(|v|<1\) in absolute value, is the transform of the martingale \(f\) by \(v\). Write \(\|f\|_p=\text{sup} \|f_n\|_p\) and define the maximal function \(g^*\) of \(g\) by \(g^*(\omega)=\text{sup} |g_n(\omega)|\).

2. Real-valued case. Let \(\beta\) be a sub-\(\sigma\)-field of \(\alpha\). If \(Z\) is a random variable with finite mean, by the Radon-Nikodým theorem, for \(Z\) there is a \(\beta\)-measurable function \(\varphi\) which is satisfying

\[
\int Z(\omega)\,dP = \int \varphi(\omega)\,dP \quad \text{for every } A \in \beta
\]

and which decides the correspondence \(Z\to \varphi(\text{i.e.}, Z(\omega)\to \varphi(\omega))\).

This function \(\varphi\) is unique up to a set of \(P\)-measure zero, and any such function, denoted by \(E(Z/\beta)\), is called the conditional expectation of \(Z\) relative to \(\beta\). Therefore, the above correspondence is written by

\[
E(Z/\beta)(\omega)=E(Z(\omega)/\beta)=\varphi(\omega) \quad \text{for almost all } \omega \in \Omega.
\]

If \(f=(f_1,f_2,\cdots)\) is a martingale then, for almost all \(\omega\),

\[
E(f_{n+1}(\omega)/\alpha_n)=f_n(\omega) \quad (n=1,2,\cdots).
\]

Let \(X=\mathbb{R}\), that is, let \(f=(f_1,f_2,\cdots)\) be an \(L^1\)-bounded and real-valued martingale. Then \(|\cdot|\) denotes the absolute value.

Theorem 1. If \(\|f\|_1<\infty\) then \(\sum_{n=1}^{\infty} |f_{n+1}-f_n| < \infty \) a.e., that is, \(f\) is of bounded variation.

Proof. Suppose that there exists a subset \(M\) of \(\Omega\) such that \(P(M)\neq 0\) and

\[
\sum_{n=1}^{\infty} |f_{n+1}(\omega)-f_n(\omega)| = \infty \quad \text{for all } \omega \in M.
\]

Then, for any \(G=G(\omega)>0\) there is a number \(N=N(G,\omega)>0\) such that

\[
\sum_{k=1}^{N} |f_{k+1}(\omega)-f_k(\omega)| > G \text{ on } M \quad (\forall n>N).
\]

So there are a number \(k=k(\omega)<n\) and a positive real number \(G'=G'(\omega)\) such that

\[
|f_{k+1}(\omega)-f_k(\omega)| = G' > 0 \quad \text{for each } \omega \in M.
\]

Here, set

\[
G'=G'(\omega') = |f_{k(\omega)+1}(\omega')-f_{k(\omega)}(\omega')| \quad \text{for each } \omega \in M \quad (\omega' \in \Omega, M\subset \Omega).
\]

\(G'\) is well-defined on \(\Omega\) and \(G'>0\) when \(\omega'\omega\), i.e., \(G'>0\) on \(M\).

Now, when \(\omega'=\omega\), \(|f_{k+1}(\omega)-f_k(\omega)|\) is defined on \(M\).
By the definition of the absolute value

\[|f_{k+1}(\omega) - f_k(\omega)| = \{-f_{k+1}(\omega) - f_k(\omega) \} \text{ on } A \overset{\text{def}}{=} \{ \omega : f_{k+1}(\omega) \geq f_k(\omega) \} \subset M \backslash A. \]

Since \(k(\omega) = k < \infty \), \(\{k(\omega) : \omega \in M\} \subset \{1, 2, \ldots, n, \ldots\} \).

Thus,

\[E \left| f_{k(\omega)}(\omega') \right| \leq \sup_{\lambda \in \{k(\omega) : \omega \in M\}} E \left| f_{\lambda} \right| \leq \sup_{\lambda \in \{1, 2, \ldots, n, \ldots\}} E \left| f_{\lambda} \right| = \sup E \left| f_n \right| < \infty. \]

So \(|f_{k+1} - f_k| \in L'. \)

For almost all \(\omega \in A \)

\[E(\left| f_{k+1} - f_k \right| / \alpha_k)(\omega) = E(\left| f_{k+1} - f_k \right| / \alpha_k) \]

\[= E((f_{k+1} - f_k)^* + (f_{k+1} - f_k)^-)(\omega) / \alpha_k) \]

\[= E((f_{k+1} - f_k)^*(\omega) + (f_{k+1} - f_k)^-)(\omega) / \alpha_k) \]

\[= E(\left| f_{k+1} - f_k \right| / \alpha_k) \]

\[= E(\left| f_{k+1} - f_k \right| / \alpha_k) \]

\[= E((f_{k+1} - f_k)(\omega) / \alpha_k) \]

\[= E(\left| f_{k+1} - f_k \right| / \alpha_k)(\omega) \]

In general, since \(f \) is a martingale \(E(f_{k+1} / \alpha_k) = f_k \) a.e. for any \(k \). Take any \(\omega \in \Omega \) and fix this. Let \(k = k(\omega) \).

Then \(E(f_{k(\omega)} / \alpha_{k(\omega)})(\omega') = f_{k(\omega)}(\omega') \) for almost all \(\omega' \in \Omega \).

Here take \(\omega' = \omega \) then \(E(f_{k(\omega)} / \alpha_{k(\omega)})(\omega) = f_{k(\omega)}(\omega) \)

for almost all \(\omega \). Thus, \(E(f_{k+1} / \alpha_k) = f_k \) a.e. for almost all \(\omega \in A \).

So for almost all \(\omega \in A \)

\[E(\left| f_{k+1} - f_k \right| / \alpha_k)(\omega) = E(\left| f_{k+1} - f_k \right| / \alpha_k) \]

\[= E(f_{k+1} - f_k)(\omega) / \alpha_k \]

\[= E(f_{k+1} / \alpha_k)(\omega) \]

\[= f_{k+1} / \alpha_k \]

\[= f_k \]

\[= 0. \]

Therefore \(E(\left| f_{k+1} - f_k \right| / \alpha_k)(\omega) = 0 \) for almost all \(\omega \in M \).

On the other hand, for almost all \(\omega' \in \Omega \)

\[E(G'(\omega') / \{ \phi, \Omega \}) = E(G' / \{ \phi, \Omega \})(\omega') \]

\[= E(E(G' / \alpha_{k(\omega)})(\omega') / \{ \phi, \Omega \}) \]

\[= E(E(G' / \alpha_{k(\omega)})(\omega') / \{ \phi, \Omega \}) \]

\[= E(E(G' / \alpha_{k(\omega)})(\omega') / \{ \phi, \Omega \}) \]

If \(E(G'(\omega') / \alpha_{k(\omega)} = 0 \) \((k=k(\omega)) \) for almost all \(\omega' \in \Omega \)

then

\[E(G'(\omega')) = E(G'(\omega') / \{ \phi, \Omega \}) \]

\[= E(E(G'(\omega') / \alpha_{k(\omega)})(\omega') / \{ \phi, \Omega \}) \]

\[= E(0 / \{ \phi, \Omega \}) \]

\[= E(0) \]

\[= 0. \]

Thus, \(G' = 0 \) a.e. This contradicts to \(G' > 0 \) on \(M \).
So \(E(G'(\omega')/\alpha_{\omega}) \neq 0 \) when \(\omega' = \omega \) on \(M \).

Then \(0 = E(|f_{n+1}(\omega) - f_n(\omega)|/\alpha_\omega) \)
\[= E(G'(\omega)/\alpha_\omega) \]
\[\neq 0 \ \text{for some} \ \omega \in M. \]

This is a contradiction on \(M \). Thus there is not such \(M \).

Therefore \(\sum_{\omega \in \Omega} |f_{n+1}(\omega) - f_n(\omega)| < \infty \) for almost all \(\omega \in \Omega \).

Corollary 1. If \(f = (f_n)_{n \geq 1} \) is an \(L^1 \)-bounded martingale then
\(E(|f_{n+1} - f_n|/\alpha_n) = 0 \) a.e. and \(\|f_{n+1} - f_n\|_1 = E |f_{n+1} - f_n| = 0 \) for \(n < \infty \).

In fact, let \(M = \Omega \) in above proof.

Corollary 2. Under the above condition \(\sum_{n=1}^\infty \|f_{n+1} - f_n\|_1 < \infty \).

In fact, \(\lim_{n \to \infty} \|f_{n+1} - f_n\|_1 = 0 \).

3. Vector-valued case.

Let \(Z(\omega) \) be a Bochner-integrable function on a probability space \((\Omega, \alpha, P)\) taking values in \(X \).

Let \(\beta \) be a sub-\(\sigma \)-field contained in \(\alpha \). Then the conditional expectation \(E(Z/\beta) \) of \(z(\omega) \) relative to \(\beta \) is defined as a Bochner-integrable function on \((\Omega, \alpha, P)\) such that \(E(Z/\beta) \) is \(\beta \)-measurable and that

\[
\int A \cdot E(Z/\beta) \, dP = \int A \cdot E(Z) \, dP, \quad \forall A \in \beta, \text{ where the integrals are Bochner-integrals.}
\]

Therefore, by above correspondence \(Z(\omega) \to E(Z/\beta)(\omega) \), similarly in the real-valued case

\(E(Z/\beta)(\omega) \) is written by \(E(Z(\omega)/\beta) \)

for almost all \(\omega \in \Omega \).

(See [4], p.395 and p.396, Theorem 1. And also see [5], p.22.)

Let \(f \) be an \(X \)-valued and \(L^1 \)-bounded martingale.

Then \(E(f_{n+1}(\omega)/\alpha_n) = f_0(\omega) \) (\(n=1,2,\cdots \)).

Theorem 2. If \(\|f\|_1 < \infty \) then \(\sum_{n=1}^\infty |f_{n+1} - f_n| < \infty \) a.e.

Proof. Suppose that there exists a subset \(M \) of \(\Omega \) such that \(P(M) \neq 0 \) and \(\sum_{n=1}^\infty |f_{n+1}(\omega) - f_n(\omega)| = \infty \) for all \(\omega \in M \).

Then, for any \(G = G(\omega) > 0 \) there is a number \(N = N(G, \omega) > 0 \) such that \(\sum_{n=1}^N |f_{n+1}(\omega) - f_n(\omega)| > G \) on \(M \) (\(\forall n \geq N \)).

So there are a number \(k = k(\omega) \leq n \) and a positive real number \(G' = G'(\omega) \) such that \(|f_{k+1}(\omega) - f_k(\omega)| = G' > 0 \) for each \(\omega \in M \).

Then, \(\tilde{g}(\omega') = \frac{f_{k+1}(\omega') - f_k(\omega')}{\alpha_k(\omega')} \) for each \(\omega' \in M \) (\(\omega' \in \Omega, M \subseteq \Omega \)) such that \(|\tilde{g}(\omega)| = G'(\omega) > 0 \) when \(\omega' = \omega \), i.e., \(\tilde{g} = \tilde{g}(\omega) \neq \tilde{0} \) on \(M \).

Since \(f \) is a martingale, for almost all \(\omega' \in \Omega \)
\[
E(f_{k+1}(\omega') - f_k(\omega'))/\alpha_k(\omega') = E(f_{k+1}(\omega') - f_k(\omega'))/\alpha_k(\omega') = \tilde{0}.
\]

So \(\int_M E(\tilde{g}(\omega')/\alpha_k(\omega')) \, dP(\omega') = \tilde{0} \) and \(\int_{\delta_M} E(\tilde{g}(\omega')/\alpha_k(\omega')) \, dP(\omega') = \tilde{0} \).

Thus, \(E(\tilde{g}) = E(\tilde{g}(\omega')/\alpha_k(\omega')) \, dP(\omega') \)
\[= \int_M E(\tilde{g}(\omega')/\alpha_k(\omega')) \, dP(\omega') + \int_{\delta_M} E(\tilde{g}(\omega')/\alpha_k(\omega')) \, dP(\omega') \]
\[= \tilde{0} \] (Here \(E \) denotes the Bochner integral. See [5].)

\[\iff E \cdot |\tilde{g}| = 0 \] (The \(E \) is the Lebesgue integral)
\[\iff |\tilde{g}| = 0 \ a.e. \]
\[\iff \tilde{g}(\omega') = \tilde{0} \] for almost all \(\omega' \in \Omega \) and for each \(\omega \in M \).

So \(\tilde{g}(\omega) = \tilde{0} \) on \(M \) (\(\subseteq \Omega \)).
This is a contradiction on M. Thus, there is not such M.
Therefore \[\sum_{n=1}^{\infty} |f_{n+1}(\omega) - f_n(\omega)| < \infty \] for almost all \(\omega \in \Omega \).

Theorem 3. If \(\|f\|_1 < \infty \) then the martingale transform \(g \) converges a. e. in \(X \) without the assumption that \(v \) is predictable.

In fact,
\[
|g_n(\omega)| \leq \sum_{n=1}^{\infty} |v_n(\omega)| \cdot |f_{n+1}(\omega) - f_n(\omega)| \leq \sum_{n=1}^{\infty} |f_{n+1}(\omega) - f_n(\omega)| < \infty
\]
for almost all \(\omega \).

Theorem 4. Let \(1 < p < \infty \) and \(\|f\|_1 < \infty \). For a Banach space \(X \) with the Radon-Nikodým property, \(\lambda \cdot P(g^* > \lambda) \leq c \cdot \|f\|_1, \lambda > 0 \), and \(\|g\|_p \leq c_p \cdot \|f\|_p \)
hold under the assumption that \(v \) is predictable.

Proof. For any Banach space \(X \), by a result of Burkholder (Theorem 1.1 of [2]), the following statements, each to hold for all such \(f \) and \(g \) are equivalent:
\[
\|f\|_1 < \infty \iff \text{g converges a. e.},
\]
\[
\lambda \cdot P(g^* > \lambda) \leq c \cdot \|f\|_1, \lambda > 0,
\]
\[
\|g\|_p \leq c_p \cdot \|f\|_p.
\]
Combine this result with Theorem 3.

Acknowledgement. The author is very grateful to Professor D. L. Burkholder for his kindly discussions in details.

References

[2] ____________ : A geometric characterization of Banach spaces in which martingale difference sequences are unconditional.

Department of Mathematics, Tomakomai National College of Technology, Tomakomai, Hokkaido 059-12, Japan