講義：ラプラス変換

石 信 一*

Note on Laplace transformations

Shin-ichi ISHI

要 旨
授業改善の一方策として、シラバス用の授業教材の作成を試みた。

Abstract
we have made and showed a lecture-note about Laplace transformation like syllabus to improve upon the scheme of teaching in Applied Mathematics.

ある物理系が、次の微分方程式

\[a \frac{d^2y(t)}{dt^2} + b \frac{dy(t)}{dt} + cy(t) = f(t) \]

で表されるとする。ここに、a, b, c は定数、f(t) は系の外力、微分方程式の解 y(t) は系の応答関数と呼ばれる。異なる物理系でも、それらの系を記述する微分方程式は同じ型である場合がある。例えば、力学及び音響系の振動と電気回路系は同型である。

力学系の振動

\[M \frac{d^2 x(t)}{dt^2} + r_M \frac{dx(t)}{dt} + \frac{1}{C_M} x(t) = f_M(t) \]

音響系の振動

\[M \frac{d^2 X(t)}{dt^2} + r_A \frac{dX(t)}{dt} + \frac{1}{C_A} Y(t) = p(t) \]

電気回路系

\[L \frac{d^2 q(t)}{dt^2} + e_s \frac{dq(t)}{dt} + \frac{1}{C_s} q(t) = e(t) \]

\[i(t) = \frac{dq(t)}{dt}, \quad L \frac{di(t)}{dt} + e_s i(t) + \frac{1}{C_s} \int i(t) dt = e(t) \]

上の記号の説明と対応関係を次表にまとめておく（理化学辞典、第3版増補版(893)から引用）。

<table>
<thead>
<tr>
<th>機械系</th>
<th>機械系</th>
<th>音響系</th>
<th>電気系</th>
</tr>
</thead>
<tbody>
<tr>
<td>物理量</td>
<td>記号</td>
<td>物理量</td>
<td>記号</td>
</tr>
<tr>
<td>力</td>
<td>f_M</td>
<td>音圧</td>
<td>p</td>
</tr>
<tr>
<td>変位</td>
<td>x</td>
<td>体積変位</td>
<td>X</td>
</tr>
<tr>
<td>速度</td>
<td>u = \frac{dx}{dt}</td>
<td>体積速度</td>
<td>U = \frac{dX}{dt}</td>
</tr>
<tr>
<td>抵抗</td>
<td>r_M</td>
<td>抵抗</td>
<td>r_A</td>
</tr>
<tr>
<td>リアクタンス</td>
<td>Z_M</td>
<td>リアクタンス</td>
<td>Z_A</td>
</tr>
<tr>
<td>コンプライアンス</td>
<td>C_M</td>
<td>キャパシタンス</td>
<td>C_A</td>
</tr>
<tr>
<td>質量</td>
<td>m</td>
<td>イナタンス</td>
<td>M</td>
</tr>
<tr>
<td>インピーダンス</td>
<td>Z_M</td>
<td>インピーダンス</td>
<td>Z_A</td>
</tr>
</tbody>
</table>

* 助教授 一般教科
ラプラス変換（以下、L変換）の講義の目的は、上述の単振動の方程式や電気回路の方程式をL変換によって解けるようになることです。これらの方程式（二階の定数係数の線形微分方程式）は、別の解析的方法で解けますが、L変換を用いる解法に特徴をもたせなければなりません。それは、デルタ（δ）関数（不連続関数）の使用です。その際、合成積とそのL変換の知識が必要になります。これで、一変に高級な解法（難しい？）になります。

＜＜第1週＞＞
L変換（積分）の導入ですが、復習と称して、次の定積分の計算問題から始めます。

\[
\int_0^\infty e^{-t}dt, \quad \int_0^\infty e^{-2t}cos\,3tdt, \quad \int_0^\infty e^{-2t}sin\,2tdt
\]

これらの計算は、部分積分の練習です。これらの計算ができれば、L変換の授業の理解は容易であることを知らせます。類似の演習問題を宿題とします（print I）。その一つとして、ガンマ関数

\[
\Gamma(x) = \int_0^\infty e^{-t}t^{x-1}dt
\]

の次の性質を証明させる課題をだします。

【問題】 (1) \(\Gamma(1) = 1\) 　 (2) \(\Gamma(\frac{1}{2}) = \sqrt{\pi}\)
(3) \(\Gamma(x+1) = x\Gamma(x)\) 　 (4) \(\Gamma(n) = (n-1)! \) (n自然数)

解。

(1) \(\Gamma(1) = \int_0^\infty e^{-t}dt = -[e^{-t}]_0^\infty = 1\)

(2) \(\Gamma(\frac{1}{2}) = \int_0^\infty e^{-t}t^{-\frac{1}{2}}dt = 2\int_0^\infty e^{-t}d\frac{\sqrt{t}}{2} = \sqrt{\pi}\)

(3) \(\Gamma(x+1) = \int_0^\infty e^{-t}t^{x-1}dt = \int_0^\infty e^{-t}t^{x}dt\)

\(= [e^{-t}t^x]_0^\infty + x \int_0^\infty e^{-t}t^{x-1}dt = x\Gamma(x)\)

(4) \(\Gamma(n) = \int_0^\infty e^{-t}t^{n-1}dt = (n-1)! \Gamma(n-1)\)

\(= (n-1)(n-2)! \Gamma(n-2) = \cdots = (n-1)\cdots \cdot 1 \Gamma(1)\)

\(= (n-1)(n-2)\cdots \cdot 1 = (n-1)!\)

＜＜第2週＞＞

L関数の拡張として、積分演算子（作用素）による変換としてL変換（積分）を定義します。

\(L(f) = F(s) \overset{\alpha f}{\underset{\alpha t}{\sim}} = \int_0^\infty e^{-s}f(t)dt\) (1)

L変換のいろいろな性質については、積分演算子の練習として宿題（print II）とします。（この部分は、必要に応じて説明することとし、大雰囲気を省略した。）必要とするL変換は次の4つ。

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(L(f) = F(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t^n)</td>
<td>(\frac{n!}{s^{n+1}})</td>
</tr>
<tr>
<td>(e^{at})</td>
<td>(\frac{1}{s+a})</td>
</tr>
<tr>
<td>(sin\ at)</td>
<td>(\frac{a}{s^2 + a^2})</td>
</tr>
<tr>
<td>(cos\ at)</td>
<td>(\frac{s}{s^2 + a^2})</td>
</tr>
</tbody>
</table>

こうして、上記の定積分が、L変換を知れば容易に求まることを教えます。以上の初等関数のL変換の他に、δ関数、合成積とそれらのL変換の知識が必要です。
＜＜第3週＞＞
ヘビサイド関数（Heaviside：H(t)）とそのL変換の表式を与えます。

\[
H(t-a) の定義式 \quad H(t-a) = \begin{cases} 1 & (t \geq a) \\ 0 & (t < a) \end{cases} \quad (2)
\]

\[
H(t-a) の L 変換 \quad L(H(t-a)) = \int_0^\infty H(t-a)e^{-st}dt = \int_0^\infty e^{-st}dt = \frac{1}{s}e^{-sa}
\]

[問題] \(f(t) = \begin{cases} 1 & (a \leq t \leq b) \\ 0 & (0 \leq t < a, t > b) \end{cases} \) として

(1) \(f(t) \) をHeaviside関数を用いて表せ。（2）\(L(f) \) を求めよ。

(3) \(\lim_{b \to a} \frac{1}{b-a} L(f) \) を求めよ。

解。

(1) \(f(t) = H(t-a) - H(t-b) \)

(2) \(L(f(t)) = L(H(t-b)) = \frac{1}{s} (e^{-sa} - e^{-sb}) \)

(3) \(b = a + \varepsilon \) とおいて、上式(2)に代入すれば、\(\frac{1}{s} e^{-sa} (1 - e^{-\varepsilon}) \)

\(e^{-\varepsilon} \) を展開して、極限 \(\lim_{\varepsilon \to 0} \frac{1}{b-a} L(f) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} L(f) \) をとれば、

\(\lim_{\varepsilon \to 0} \frac{e^{-sa}}{s} (1 - (1 - s \varepsilon + \cdots)) = e^{-sa} \)

この問題を通して、天下り的に \(\delta \) 関数とそのL関数の表式を与えます。

\[
\frac{dH(t-a)}{dt} = \delta (t-a), \quad a = 0 \quad \text{のとき,} \quad \frac{dH(t)}{dt} = \delta (t)
\]

\[
L(\delta (t-a)) = \int_0^\infty e^{-st} \delta (t-a)dt = e^{-sa}
\]

\[
L(\delta (t)) = \int_0^\infty e^{-st} \delta (t)dt = 1
\]

＜＜第4週＞＞
合成積を導入します。合成積の定義式は、

\[
f \ast g = \int_0^a f(t-x)g(x)dx
\]
(3)

です。合成積（*）と普通の積の相違を次の例で示します。

\[
t \ast t = \int_0^t (t-x)x dx = t \int_0^t x dx - \int_0^t x^2 dx = \frac{1}{6} t^3 \neq t t^2
\]

合成積の性質として、それが交換可能（\(f \ast g = g \ast f \)）であることを示します（単に可換という）。

\[
f \ast g = \int_0^T f(t-x)g(x)dx \quad (0 \leq t \leq T)
\]

\[
= \int_0^T f(T)g(t-T)(-dT)
\]

\[
= \int_0^T f(T)g(t-T)dT = g \ast f
\]
そのL变换の表式を与えるます。

\[L(f \ast g) = \int_0^\infty e^{-at} \left\{ \int_0^{t-x} f(t-x)g(x)dx \right\} dt \]

\[= \int_0^\infty e^{-at} \left\{ \int_0^\infty f(t-x)H(t-x)g(x)dx \right\} dt \]

\[= \int_0^\infty g(x) \left\{ \int_0^\infty e^{-at} f(t-x)H(t-x)g(x)dx \right\} dx \]

\[\equiv \int_0^\infty e^{-as} g(x)dx \int_0^\infty e^{-at} f(T)dT \]

\[= G(s)F(s) = F(s)G(s) \]

合成積の計算には十分慣れる必要がありますから、計算練習をたくさん行う必要があります。

【問題】次の合成積を計算し、それらのL変換を求めよ (m, nは整数)。

(1) \(t^n \ast t^n \) （2) \(e^{mt} \ast \sin nt \) （3) \(\sin mt \ast \cos nt \)

解。

(1) \[t^n \ast t^n = \int_0^t (t-x)^n dx = \int_0^t \left(\frac{1-\frac{t}{x}}{2} \right)^n dx \]

\[\equiv t^n \int_0^t (1-T)^n(T)^n dT = t^{m+n} \int_0^1 (1-T)^n T^n dT \]

\[= t^{m+n} \Gamma(m+1,n+1) \]

上式を整理すれば、

\[\Gamma(m+1) \Gamma(n+1) = \Gamma(m+n+2)B(m+1, n+1) \]

と書けます。ここに、

\[B(m,n) = \int_0^1 t^{m-1}(1-t)^{n-1} dt \]

はベータ(Beta)関数です。上の関係式から、ベータ関数（値）はガンマ関数（値）から求められます。従って、

\[B(m+1,n+1) = \frac{\Gamma(m+1) \Gamma(n+1)}{\Gamma(m+n+2)} = \frac{m!n!}{m+n+2} \]

\[L(t^{m+n} \ast B(m+1, n+1)) = B(m+1, n+1) L(t^{m+n}) \]

\[= B(m+1, n+1) \frac{(m+n+1)!}{s^{m+n+1}} = \frac{m!n!}{(m+n+1)!} \frac{(m+n+1)!}{s^{m+n+1}} \]

\[= \frac{(m+1)!}{s^{m+1}} \frac{(n+1)!}{s^{n+1}} = L(t^n \ast t^n) \]

(2) \[\int_0^\infty e^{-mt} \sin nx dx = \int_0^\infty e^{-mt} \sin nx dx = e^{-mt} \times (2) \]

(2)' \[= \frac{1}{m^2+m^2} \{ m e^{-mt} \sin nt - ne^{-mt} \cos nt + n \} \]

(2) \[= \frac{1}{m^2+m^2} \{ m \sin nt - n \cos nt + ne^{-mt} \} \]

\[L(2) = \frac{1}{m^2+m^2} \left(\frac{mn}{s^2+n^2} - \frac{ns}{s^2+n^2} + \frac{n}{s+m} \right) \]

\[= \frac{n}{s^2+n^2} - \frac{1}{s+m} = L(e^{-mt} \ast \sin nt) \]
(3) $= \int_0^1 \sin m (t-x) \cos nx \, dx$

$= \frac{1}{2} \int_0^1 \{ \sin (mt-mx+nx) + \sin (mt-mx-nx) \} \, dx$

$= \frac{m}{m^2-n^2} \left(\cos nt - \cos mt \right)$

$L(3) = \frac{m}{m^2-n^2} \frac{s}{s^2+n^2} - \frac{s}{s^2+m^2}$

$= \frac{m}{s^2+m^2} \frac{n}{s^2+n^2} = L(\sin mt \ast \sin nt)$

以上で、微分方程式をL変換で解く準備ができました。

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$L(f) = F(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H(t-a)$</td>
<td>$\frac{1}{s} e^{-as}$</td>
</tr>
<tr>
<td>$H(t) \ (a=0)$</td>
<td>$\frac{1}{s}$</td>
</tr>
<tr>
<td>$\delta (t-a)$</td>
<td>e^{-as}</td>
</tr>
<tr>
<td>$\delta (t) \ (a=0)$</td>
<td>1</td>
</tr>
<tr>
<td>$f(t) \ast g(t)$</td>
<td>$L(f)L(g) = F(s)G(s)$</td>
</tr>
</tbody>
</table>

<<第5週>>

微分方程式は、$y'(t) + ay(t) = 0$ の解法から始めます。まず,

$L(y'(t)) = \int_0^t e^{-s} y'(t) \, dt = [e^{-s} y(t)]_0^t + s \int_0^t e^{-s} y(t) \, dt$

$= -y(0) + sY(s) = sY(s) - y(0)$

を示します。この結果は既知です（宿題としてだしている）。L変換の解法と同時に、変数分離による解法も説明します。一般解と特解を説明し、L変換の解法の利点を示します（初期値問題に便利であること）

$y'(t) + ay(t) = 0$

変数分離する

$\frac{dy}{y} = -at \quad (I)$ 両辺をL変換する

$sY(s) - y(0) + aY(s) = 0$

両辺を積分する

$\log y = -at + c' \quad (II)$ 代数方程式を解く

$Y(s) = \frac{y(0)}{s+a}$

微分方程式の一般解

$y(t) = ce^{-at} \quad (c = e^c) \quad (III)$ 両辺をL逆変換する

初期条件 $y(0) = 1$ の特解

$y(t) = e^{-at} \quad (c = 1)$

L変換による解法手段（上表の右欄，$(1) \Rightarrow (2) \Rightarrow (3)$）を丁寧に説明し、徹底させます。

微分方程式 \Rightarrow 代数方程式 \downarrow

微分方程式の解 \Leftrightarrow 代数方程式の解

逆変換（L^{-1} 变換）に必要な方法は、「変数分離」と「合成積」です。逆変換については、機械的に行うことを納得してもらいます（逆変換の計算法はあるけれども、授業では行わない。）次に,
【問題】（1）$y'+ay=\delta(t)$，（2）$y'+ay=H(t)$，（3）$y'+ay=\sin bt$
を解く。これによって，δ関数を用いる解法の利点を示す。

解。

<table>
<thead>
<tr>
<th>(1) $y'+ay=\delta(t)$</th>
<th>(2) $y'+ay=H(t)$</th>
<th>(3) $y'+ay=\sin bt$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$sy'(s) - y(0) + aY(s)$</td>
<td>$sy'(s) - y(0) + aY(s)$</td>
<td>$sy'(s) - y(0) + aY(s)$</td>
</tr>
<tr>
<td>$= 1$</td>
<td>$= \frac{1}{s}$</td>
<td>$= -\frac{b}{s^2 + b^2}$</td>
</tr>
</tbody>
</table>

初期条件：$y(0) = 0$

$Y(s) = \frac{1}{s+a}$	$Y(s) = \frac{1}{s+a} \frac{1}{s}$	$Y(s) = \frac{1}{s+a} \frac{b}{s^2 + b^2}$
$= \frac{1}{s} \frac{1}{a} - \frac{1}{s+a}$	$= \frac{b}{s^2 + b^2}$	$= \frac{b}{s+a} + \frac{ab - bs}{s^2 + b^2}$

$y(t) = e^{-at}$	$y(t) = e^{-at} \ast H(t)$	$y(t) = e^{-at} \ast \sin bt$
$= \frac{1}{a}(1-e^{-at})$	$= \frac{1}{a^2+b^2}(be^{-at} + a \sin bt - b \cos bt)$	

上の結果から，$y'+ay=f(t)$，$(y(0)=0)$の特解を得るには，まず，$f(t)=\delta(t)$の特解を求め，その解と$f(t)$の合成値を作ればよいことになる，即ち，

$$y(t) = e^{-at} \ast f(t) = \int_0^t e^{-a(t-\tau)} f(\tau) d\tau$$

（（参考）
一階線形微分方程式 $y'(t) + a(t)y(t) = f(t)$ の一般解は，

$$y(t) = e^{-\int_0^t a(\tau) d\tau} \int_0^t e^{\int_0^{\tau} a(\eta) d\eta} f(\eta) d\eta + c$$

《＜第6週＞》
二階の微分方程式は，$my''(t) + ky(t) = 0$（单振動の方程式）の解法から始めます。

二階微分のL変換公式

$$L(y''(t)) = \int_0^\infty e^{-st} y''(t) dt = [e^{-st} y'(t)]_0^\infty + s \int_0^\infty e^{-st} y'(t) dt$$

$$= -y'(0) + s \{sY(s) - y(0)\} = s^2Y(s) - sy(0) - y'(0)$$

を直接用いて解く前に，次のようにして二元一次の連立方程式で解けることを示します。

$$my''(t) + ky(t) = 0 \iff \begin{cases} my'(t) = z(t) \\ z'(t) = ky(t) \end{cases}$$

一階微分のL変換公式を用いて，上の連立方程式をL変換します。

（1）

$$\begin{cases} m(sY(s) - y(0)) = Z(s) \\ sZ(s) - z(0) = kY(s) \end{cases}$$

$Z(s)$を消去すれば，

（II）

$$m\{(s^2 + \omega^2)\}Y(s) = y(0)s + y'(0), \quad Y(s) = \frac{y(0)s + y'(0)}{(s^2 + \omega^2)}$$

逆変換して，求める解は，

（III）

$$y(t) = y(0) \cos \omega t + \frac{y'(0)}{\omega} \sin \omega t = A \sin(\omega t + \phi)$$

と書けます。ここに，定数A, ϕは，

$$A = \sqrt{(y(0))^2 + \left(\frac{y'(0)}{\omega}\right)^2}, \quad \phi = \tan^{-1}\left(\frac{y(0)}{y'(0)/\omega}\right)$$
で与えられます。

\(my'' + ky = 0 \) \((m > 0)\) の解を、 \(k > 0, \ k = 0, \ k < 0 \) の場合分けをして求めるよう。

\[
my''(t) + ky(0) = 0 \iff y'(t) + \omega^2 y(t) = 0 \quad \omega^2 = \frac{k}{m}
\]

\[
s^2 Y(s) - y(0)s - y'(0) + \omega^2 Y(s) = 0
\]

\[
(s^2 + \omega^2)Y(s) = c_0 s + c_1 \quad \left(c_0 = y(0), \ c_1 = y'(0) \right)
\]

\[
Y(s) = \frac{c_0 s + c_1}{s^2 + \omega^2}
\]

<table>
<thead>
<tr>
<th>(k > 0)</th>
<th>(k = 0)</th>
<th>(k < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y(s) = \frac{c_0 s + c_1}{s^2 + \omega^2})</td>
<td>(Y(s) = \frac{c_0 s - c_1}{s^2})</td>
<td>(Y(s) = \frac{c_0 s + c_1}{s^2 - \omega^2})</td>
</tr>
</tbody>
</table>

\[
y(t) = c_0 \cos \omega t + \frac{c_1}{\omega} \sin \omega t
\]

\[
y(t) = c_0 + c_1 t
\]

\[
y(t) = c_0 \cosh \omega t + \frac{c_1}{\omega} \sinh \omega t
\]

\[
A = \frac{c_0 + \frac{c_1}{\omega}}{2}, \quad B = \frac{c_0 - \frac{c_1}{\omega}}{2}
\]

\(k > 0 \) のとき，\(y'(t) + \omega^2 (y) t = f(t) \) \((f(t) = \delta (t), \ H(t), \ \sin bt)\) について，次の方程式を解く。

【問題1】 次の微分方程式を解け。

(1) \(y'' + \omega^2 y = \delta (t) \), (2) \(y'' + \omega^2 y = H(t) \), (3) \(y'' + \omega^2 y = \sin (at) \)

解。

<table>
<thead>
<tr>
<th>(1) (y'' + \omega^2 y = \delta (t))</th>
<th>(2) (y'' + \omega^2 y = H(t))</th>
<th>(3) (y'' + \omega^2 y = \sin (at))</th>
</tr>
</thead>
<tbody>
<tr>
<td>初期条件： (y(0) = y'(0) = 0)</td>
<td>(s^2 Y(s) + \omega^2 Y(s) = 1)</td>
<td>(s^2 Y(s) + \omega^2 Y(s) = \frac{1}{s})</td>
</tr>
</tbody>
</table>

\[
Y(s) = \frac{1}{s^3 + \omega^2}
\]

\[
y(t) = \frac{1}{\omega} \sin \omega t \star H(t)
\]

\[
y(t) = \frac{1}{\omega} \sin \omega t \star \sin at
\]

\[
y(t) = \frac{1}{\omega} \int \sin \omega x \ sin (t-x) dx = \frac{1}{\omega} \int \left[\omega^2 - \frac{b}{\omega^2} \right] \sin \omega t + \sin bt
\]

【問題2】 \(y'' + \omega^2 y(t) = 0 \) を次の条件（境界条件という）で解け。

(1) \(y(0) = y(a) = 0 \) \quad (2) \(y'(0) = y'(a) = 0 \)

解。

(1) \(s^2 Y - sy(0) - y'(0) + \omega^2 Y = 0 \)

\[
Y(s) = \frac{y'(0)}{s^2 + \omega^2}
\]

\[
y(t) = \frac{y'(0)}{\omega} \sin \omega t
\]

\[
y(a) = \frac{y(0)}{\omega} \sin \omega a = 0
\]

\[
y'(t) = y(0) \sin \left(\frac{n \pi}{a} t \right)
\]

(2) \(s^2 Y - sy(0) - y'(0) + \omega^2 Y = 0 \)

\[
Y(s) = \frac{y(0)}{s^2 + \omega^2}
\]

\[
y(t) = y(0) \cos \omega t
\]

\[
y(a) = \frac{n \pi}{a} \cos \left(\frac{n \pi}{a} t \right)
\]
上記(1), (2) のような境界条件で微分方程式を解く問題を、今までの初期値問題に対して、境界値問題という。同時に、この問題は、境界条件から整数 n（これを固有値という）を決めることになるので、固有値問題ともいう。このときの \(\omega, y(t) \) を固有振動数（固有関数）という。
こうして、目的の \(y''(t) + ay'(t) + by(t) = f(t) \) の解法に向かう。

第7章
次のような型の微分方程式の解法を演習問題とします。

問題

1. \(y'' - 2y' - 3y = 0 \)
2. \(y'' - 6y' + 9y = 0 \)
3. \(y'' - 6y' + 11y = 0 \)

解

<table>
<thead>
<tr>
<th>1 (y'' - 2y' - 3y = 0)</th>
<th>2 (y'' - 6y' + 9y = 0)</th>
<th>3 (y'' - 6y' + 11y = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((s^2 - 2s - 3)Y)</td>
<td>((s^2 - 6s - 9)Y)</td>
<td>((s^2 - 6s + 11)Y)</td>
</tr>
<tr>
<td>(= c_0 s + c_1 + 2c_0)</td>
<td>(= c_0 s + c_1 + 6c_0)</td>
<td>(= c_0 s + c_1 + 6c_0)</td>
</tr>
<tr>
<td>(Y(s) = \frac{c_0 s + c_1 + 2c_0}{(s + 1)(s - 3)})</td>
<td>(Y(s) = \frac{c_0 s + c_1 + 6c_0}{(s - 3)^2})</td>
<td>(Y(s) = \frac{c_0 s + c_1 + 6c_0}{(s - 3 + i\sqrt{2})(s - 3 - i\sqrt{2})})</td>
</tr>
<tr>
<td>(= \frac{A}{s + 1} + \frac{B}{s - 3})</td>
<td>(= \frac{A}{s - 3} + \frac{B}{(s - 3)^2})</td>
<td>(= \frac{c_0 s + c_1 + 6c_0}{(s - 3)^2 + 2})</td>
</tr>
<tr>
<td>(A = -\frac{c_0}{c_0})</td>
<td>(A = c_0)</td>
<td>(A = c_0)</td>
</tr>
<tr>
<td>(B = \frac{5c_0 s + c_1}{4})</td>
<td>(B = 9c_0 s + c_1)</td>
<td>(B = \frac{9c_0 s + c_1}{2\sqrt{2}})</td>
</tr>
<tr>
<td>(y(t) = Ae^{-t} + Be^{2t})</td>
<td>(y(t) = Ae^{3t} + Be^{4t})</td>
<td>(y(t) = Ae^{\omega t} \cos \sqrt{2} t + Be^{\omega t} \sin \sqrt{2} t)</td>
</tr>
<tr>
<td>(= Ae^{t}(1 + \frac{B}{A} t))</td>
<td>(y(t) = Ae^{3t} \sin \sqrt{2} t)</td>
<td>(= A'e^{\omega t} \sin (\sqrt{2} t + \phi))</td>
</tr>
</tbody>
</table>

こうした具体的な問題解決法の後（print 3 III）に、\(y' + ay' + by = 0 \) の解を判別式を用いて分類する。

\[
y'(t) + ay'(t) + by(t) = 0
\]

(1) \(s Y(s) - y(0) s - y'(0) \) + \(a s Y(s) - y(0) \) + \(by(s) = 0 \)

(2) \(s^2 + as + b \) \(Y(s) = y(0) + y'(0) + ay(0) \)

\[
Y(s) = \frac{c_0 s + c_1}{s^2 + as + b}
\]

二次方程式 \(s^2 + as + b = 0 \) 的判別式 \(D = a^2 - 4b \)

\[
D > 0 \text{（二次根} \alpha \neq \beta) \quad D = 0 \text{（重根} \alpha) \quad D < 0 \text{（共役虚根} \alpha \pm i\omega)\]

\[
s^2 + as + b = (s - \alpha)(s - \beta)
\]

\[
s^2 + as + b = (s - \alpha)^2
\]

\[
s^2 + as + b = (s - \alpha + i\omega)(s - \alpha - i\omega)
\]

\[
Y(s) = \frac{c_0 s + c_1}{(s - \alpha)(s - \beta)}
\]

\[
Y(s) = \frac{c_0 s + c_1}{(s - \alpha)^2}
\]

\[
Y(s) = \frac{c_0 s + c_1}{(s - \alpha)^2 + \omega^2}
\]

\[
A = \frac{c_0 \alpha + c_1}{\alpha - \beta}
\]

\[
A = c_0
\]

\[
A = \frac{c_0 \alpha + c_1}{\omega}
\]

\[
y(t) = Ae^\alpha + Be^\beta
\]

\[
y(t) = Ae^{\alpha t} + Be^{\beta t}
\]

\[
y(t) = Ae^{\alpha t} \cos \omega t + \frac{B}{\omega} e^{\beta t} \sin \omega t
\]

\[
y(t) = Ae^{\alpha t} \cos \omega t + \frac{B}{\omega} e^{\beta t} \sin \omega t
\]

\[
y'(t) + ay'(t) + by(t) = \delta(t), (y(0) = y'(0) = 0)
\]
の特解（後の為に、この場合の解y(t)をg(t)で表す）は、上表を利用すれば、容易に書き下せます。

<table>
<thead>
<tr>
<th>D > 0 (二実根 α ± β)</th>
<th>D = 0 (重根 α)</th>
<th>D < 0 (共役虚根 α ± iω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G(s) = \frac{1}{α - β} (s - α - iβ) \left(\frac{1}{s - α + iβ} \right)</td>
<td>G(s) = \frac{1}{(s - α)^2 + ω^2}</td>
<td>G(s) = \frac{1}{(s - α)^2 + ω^2}</td>
</tr>
<tr>
<td>g(t) = \frac{1}{α - β} e^{αt} - e^{βt}</td>
<td>g(t) = t e^{αt}</td>
<td>g(t) = \frac{1}{ω} e^{αt} sin ωt</td>
</tr>
</tbody>
</table>

こうして,

\[y''(t) + ay'(t) + by(t) = f(t), \quad (y(0) = y'(0) = 0) \] \hspace{1cm} (10)

の解は、直ちに合成式で

\[y(t) = g(t) * f(t) = \int_0^t g(t - x) f(x) \, dx \]

と書けます。以上で、目的は達成されました。

＜まとめ＞

\(y''(t) + ay'(t) + by(t) = f(t) \)の両辺をL変換した式を次のように書き換えます。

\(H(s)Y(s) = H_0(s) + F(s) \)

ここに、\(H_0(s) = s^2 + as + b \), \(H_0(s) = y(0)s + y'(0) + ay(0) \)

\(H(s) = H_0(s) + F(s) \)

\(H_0(s) \)は、初期条件に依存しているので、例えば、初期値として\(y(0) = y'(0) = 0 \)とすれば、消える項である。他方、\(H(s) \)は、初期条件には依存せず、その微分方程式の型を規定している。\(H(s) \)を特性関数、\(H(s) = 0 \)を特性方程式、その解（根）を特性解（根）という。上式\(H(s)Y(s) = H_0(s) + F(s) \)において、初期条件として\(y(0) = y'(0) = 0 \)とすれば、\(H(s)Y(s) = F(s) \)となる。両辺に、\(H(s) \)の逆を掛ければ、

\[Y(s) = \frac{1}{H(s)} F(s) \]

で、この逆変換をとれば、

\[y(t) = g(t) * f(t) = \int_0^t g(t - x) f(x) \, dx \]

を得る。ここに、\(L^{-1} \left[\frac{1}{H(s)} \right] = g(t) \)を伝達関数（transfer function）、あるいは、積分演算子の核,

グリーン関数（Green function）という。

微分方程式(9)のシステム工学的な解釈をすれば、\(f(t) \)を入力（外力）と呼べば、\(y(t) \)を出力（応答）という。特に、\(f(t) = δ(t) \)（インパルス）のとき、\(y(t) = g(t) \)をインパルス応答という。また、\(f(t) = H(t) \)（単位段階関数）のとき、\(y(t) \)を単位応答という。

A Print I. 定積分の計算練習

(1) \[\int_0^\infty e^{-at} \, dt \]

(2) \[\int_0^\infty e^{-at} \, e^{-bt} \, dt \]

(3) \[\int_0^\infty e^{-at} \, dt \]

(4) \[\int_0^\infty e^{-at} \, dt \]

(5) \[\int_0^\infty e^{-at} \sin \omega t \, dt \]

(6) \[\int_0^\infty e^{-at} \cos \omega t \, dt \]

(7) \[\int_0^\infty e^{-at} \sqrt{t} \, dt \]

(8) \[\int_0^\infty e^{-at} \, \sqrt{t} \, dt \]

解。

(1) \[\int_0^\infty e^{-at} \, dt = \frac{1}{2} [e^{-at}]_0^\infty = \frac{1}{2} \]

(2) \[\int_0^\infty e^{-at} \, e^{-bt} \, dt = \frac{1}{2} + a \left[e^{-at} \right]_0^\infty = \frac{1}{a + 2} \]

(3) \[\int_0^\infty e^{-at} \, dt = \left[-e^{-at} \right]_0^\infty + \int_0^\infty e^{-at} \, dt = \left[-e^{-at} \right]_0^\infty = 1 \]
\[(4) \quad (I)^2 = \int_0^\infty \int_0^\infty e^{-x}e^{-y} \, dt \, ds = \int_0^\infty \int_0^\infty e^{-x} \, rdr \, d\theta = \int_0^\infty \int_0^1 -\frac{1}{2} \left(-\frac{de^{-r}}{dr} \right) \, dr \, d\theta = \frac{1}{2} \frac{\pi}{2} \left(e^{-r} \right)_0^\infty = \frac{\pi}{4} \]

\[(I) = \frac{\sqrt{\pi}}{2} \]

\[(5) \quad (I) = \int_0^\infty e^{-3t} \sin 3t \, dt = \left[-\frac{1}{2} e^{-3t} \sin 3t \right]_0^\infty + \frac{3}{2} \int_0^\infty e^{-3t} \cos 3t \, dt = \frac{3}{2} \left\{ \left[-\frac{1}{2} e^{-3t} \cos 3t \right]_0^\infty - \frac{3}{2} \int_0^\infty e^{-3t} \sin 3t \, dt \right\} = \frac{3}{4} - \frac{9}{4} \]

\[\frac{13}{4} (I) = \frac{3}{4} \quad , \quad (I) = \frac{3}{13} \]

\[(6) \quad (I) = \int_0^\infty e^{-3t} \cos 2t \, dt = \left[-\frac{1}{3} e^{-3t} \cos 2t \right]_0^\infty + \frac{2}{3} \int_0^\infty e^{-3t} \sin 2t \, dt = \frac{1}{3} - \frac{2}{3} \left\{ \left[-\frac{1}{3} e^{-3t} \sin 2t \right]_0^\infty + \frac{2}{3} \int_0^\infty e^{-3t} \sin 2t \, dt \right\} = \frac{1}{3} - \frac{4}{9} \]

\[\frac{13}{9} (I) = \frac{1}{3} \quad , \quad (I) = \frac{3}{13} \]

\[(7) \quad \int_0^\infty e^{-t} \sqrt{t} \, dt \overset{\text{テスト}}{=} 2 \int_0^\infty e^{-T^2} T \, dT = 2 \left\{ \left[-\frac{1}{2} Te^{-T^2} \right]_0^\infty + \frac{1}{2} \int_0^\infty e^{-T^2} \, dT \right\} = \frac{1}{2} \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2} \]

\[(8) \quad \int_0^\infty e^{-\frac{1}{t}} \, dt \overset{\text{テスト}}{=} 2 \int_0^\infty e^{-T} \, dT = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi} \]

B Print II. L 変換のいろいろな性質。

次の関数の L 変換 \(L(f(t)) = F(s) \) を求めよ \((a,b) \) は定数。

(1) \(af(t) + bg(t) \) (2) \(f(at) \) (3) \(f(at-b) \) (4) \(f(at+b) \)

(5) \(e^{-at} f(t) \) (6) \(\frac{df(t)}{dt} = f'(t) \) (7) \(\frac{d^2 f(t)}{dt^2} = f''(t) \) (8) \(tf(t) \)

(9) \(\int_0^1 f(x) \, dx \) (0) \(\int_0^1 f(x) \, dx \) (10) \(f(t) = f(t + T) \)

\((T \) は周期)。

解。

(1) \(L(f(at) + bg(t)) = aL(f(t)) + bL(g(t)) = aF(s) + bG(s) \)

(2) \(L(f(at)) = \frac{1}{a} \int_0^\infty e^{-st} f(x) \, dx = \frac{1}{a} F \left(\frac{s}{a} \right) \)

(3) \(L(f(t-b)) = e^{-(s-b)} \int_0^\infty e^{-st} f(x) \, dx = e^{bs} F(s) \)

(4) \(L(f(t+b)) = e^{-b(s+a)} \int_0^\infty e^{-st} f(x) \, dx = \frac{1}{a} e^{bs} \left\{ \int_0^\infty e^{-st} f(x) \, dx - \int_0^\infty e^{-st} f(x) \, dx \right\} = \frac{1}{a} e^{bs} F(s) \)
(5) \[L \left(e^{zt} f(t) \right) = \int_0^\infty e^{-st} \left(e^{zt} f(t) \right) dt = \int_0^\infty e^{-\left(t^2 + at\right)} f(t) dt = F(s + a) \]

(6) \[L(f(t)) = sF(s) - f(0) \]

(7) \[L(f'(t)) = s^2 F(s) - sf(0) - f'(0) \]

[一般形] \(L(f^n(t)) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \cdots - f^{n-1}(0) \)

(8) \[L(t^n f(t)) = \int_0^\infty e^{-st} (t^n f(t)) dt = -\int_0^\infty \frac{d}{ds} (e^{-st}) f(t) dt = -\int_0^\infty e^{-st} f(t) dt = -\left(\frac{d}{ds} (F(s)) \right)' \]

[一般形] \(L(t^n f(t)) = (-1)^n \frac{d^n}{ds^n} F(s) \)

(9) \[L \left[\frac{f(t)}{t} \right] = \int_0^\infty e^{-st} \left[\frac{f(t)}{t} \right] dt = \int_0^\infty \left[\int_0^t e^{-st} ds \right] f(t) dt = \int_0^\infty \left[\int_0^t e^{-st} f(t) dt \right] ds = \int_0^\infty F(s) ds \]

[一般形] \[L \left[\frac{f(t)}{t^n} \right] = \left[\int_0^\infty \cdots \int_\frac{t}{s} F(s) ds ds_1 \cdots ds_{n-1} \right] \]

(10) \[L \left[\int_0^t f(s) ds \right] = \int_0^\infty e^{-st} \left[\int_0^t f(s) ds \right] dt = \left[-\frac{1}{s} e^{-st} \int_0^t f(s) ds \right]_0^\infty + \frac{1}{s} \int_0^\infty e^{-nt} f(t) dt = \frac{1}{s} F(s) \]

[一般形] \[L \left[\int_0^t \cdots \int_0^{t \frac{s}{s_1}} f(s) ds ds_1 \cdots ds_{s-1} \right] = \frac{1}{s^2} F(s) \]

(11) \[L(f(t)) = L(f(t+T)) = \int_0^{T-t} e^{-st} f(t) dt = \int_0^T e^{-st} f(t) dt + \int_T^{T-t} e^{-st} f(t) dt \]

\[\int_T^{T-t} e^{-st} f(t) dt = \int_0^T e^{-\left(T-t^2 \right)} f(T-t) dt \]

\[\int_0^T e^{-\left(T-t^2 \right)} f(T-t) dt = \int_0^{T-x} e^{-\left(T-x^2 \right)} f(x) dx = e^{-t^2} L(f) \]

\[(1-e^{-T}) L(f) = \int_0^T e^{-st} f(t) dt, \quad L(f) = \frac{1}{1-e^{-T}} \int_0^T e^{-st} f(t) dt \]

C PrintIII．L 変換による微分方程式（初期値問題）の解法．

(1) \(y'' + 2y' - 3y = 0, \quad y(0) = 0, \quad y'(0) = 1 \)
(2) \(y'' + 4y' + 4y = 0, \quad y(0) = 1, \quad y'(0) = 0 \)
(3) \(y'' + 2y' + 5y = 0, \quad y(0) = 0, \quad y'(0) = -1 \)
(4) \(y'' - 2y' - 2y + 1 = 0, \quad y(0) = 0, \quad y'(0) = 0, \quad y''(0) = -1 \)
(5) \(y' + y - 2 \int_0^t y dt = 0, \quad y(0) = 1 \)
解．

(1) \(s^2 Y(s) - s y(0) - y'(0) + 2 \{ s Y(s) - y(0) \} - 3 Y(s) = 0 \)

\[
(s^2 + 2s - 3) Y(s) = 1, \quad Y(s) = \frac{1}{s^2 + 2s - 3} = \frac{1}{s - 1} + \frac{2}{s + 3}
\]

\(L^{-1}(Y(s)) = y(t) = \frac{1}{2} \left[e^t + e^{-3t} \right] \)

(2) \(s^2 Y(s) - s y(0) - y'(0) + 4 \{ s Y(s) - y(0) \} + 4 Y(s) = 0 \)

\[
(s^2 + 4s + 4) Y(s) = s + 4, \quad Y(s) = \frac{s + 4}{(s + 2)^2} = \frac{1}{s + 2} + \frac{2}{(s + 2)^2}
\]

\(L^{-1}(Y(s)) = y(t) = e^t + 2te^t = e^t (1 + 2t) \)

(3) \(s^2 Y(s) - s y(0) - y'(0) + 2 \{ s Y(s) - y(0) \} + 5 Y(s) = 0 \)

\[
(s^2 + 2s + 5) Y(s) = -1, \quad Y(s) = \frac{-1}{(s + 1)^2 + (\sqrt{3})^2}
\]

\(L^{-1}(Y(s)) = y(t) = -\frac{1}{\sqrt{3}} e^{-t} \sin \sqrt{3} t \)

(4) \(s^2 Y(s) - s^3 y(0) - s y''(0) - y'(0) - 2 \{ s Y(s) - s y(0) - y'(0) \} - s Y(s) - y(0) \) \(+ 2 Y(s) = 0 \)

\[
(s^3 - 2s^2 - s + 2) Y(s) = 1
\]

\(Y(s) = \frac{1}{s^3 - 2s^2 - s + 2} = \frac{1}{6} \left[\frac{1}{s + 1} - \frac{3}{s - 1} + \frac{2}{s - 2} \right]
\]

\(L^{-1}(Y(s)) = y(t) = \frac{1}{6} \left[e^{-t} - 3e^t + 2e^{2t} \right] \)

(5) \(s Y(s) - y(0) + Y(s) - 2 \frac{1}{s} Y(s) = 0 \)

\[
(s^2 + s - 2) Y(s) = s, \quad Y(s) = \frac{s}{s^2 + s - 2} = \frac{1}{3} \left[\frac{1}{s - 1} + \frac{2}{s + 2} \right]
\]

\(L^{-1}(Y(s)) = y(t) = \frac{1}{3} \left[e^t + 2e^{-2t} \right] \)

（平成9年11月28日受理）