デルタ関数の高次導関数の意味付け

石 信 一*

Physical meanings of higher derivatives of the delta function

Shin-ichi Ishi

要 旨
電荷の密度分布\(\rho\)と静電ポテンシャル\(\phi\)の関係はポアソン方程式\(\Delta \phi = \rho\)によって決まる。ポアソン方程式の特解（静電ポテンシャル）は、\(\phi = \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} \, d\vec{r}'\)あるいは、\(\int \frac{\rho(\vec{r} - \vec{r}')}{|\vec{r}|} \, d\vec{r}'\)と書ける（最速の可換性による）。多重極展開は、通常、ポテンシャル\(\frac{1}{|\vec{r} - \vec{r}'|} \, (|\vec{r}'| << 1)\)をベキ級数展開して得られる。しかし、電荷の密度分布関数をデルタ関数とそれからの導関数を用いて展開しても多重極展開と等価なものが得られる。その際、系統的にデルタ関数の高次導関数の意味が理解される。

Abstract

A solution of Poisson’s equation, \(\Delta \phi = \rho\), is written by \(\int \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|} \, d\vec{r}'\) or \(\int \frac{\rho(\vec{r} - \vec{r}')}{|\vec{r}|} \, d\vec{r}'\) in terms of the commutative law of the convolution. \(\phi\) and \(\rho\). The so-called multipole expansions are in the power series of Coulomb potential. However, the similar expansions can be obtained by ones of the electric charge distribution with the delta function and its higher derivatives. It shows in comparison with these expansions that the physical meanings of the higher derivatives of the delta function are systematically understood.

Heaviside 関数（単位階段関数）によるデルタ関数とそれらの高次導関数の表示

閉じた電気回路に起電力をある瞬間（\(\Delta t\)）に印加した。起電力の強さを、便宜上、1とする（下図参照）。

\[
\Delta t \cdot (\Delta t)^{-1} = \int_{t_0}^{t_0 + \Delta t} (\Delta t)^{-1} \, dt = 1
\]

* 一般教科 助教授
図のグラフを表す関数形を、

\[
D(t) = \begin{cases}
(\Delta t)^{-1} & (t_0 < t < t_0 + \Delta t) \\
0 & (t < t_0, t > t_0 + \Delta t)
\end{cases}
\] \hspace{1cm} (1)

とする。この \(D(t) \) を Heaviside 関数*を用いて表わすと、

\[
D(t) = \frac{H(t-t_0) - H(t-(t_0 + \Delta t))}{\Delta t}
\] \hspace{1cm} (2)

\[
\begin{array}{c}
\hline
H(t-t_0) \\
\hline
\end{array}
\hspace{1cm}
\begin{array}{c}
\hline
H(t-(t_0+\Delta t)) \\
\hline
\end{array}
\hspace{1cm}
\begin{array}{c}
\hline
H(t-t_0) - H(t-(t_0+\Delta t)) \\
\hline
\end{array}
\hspace{1cm}
\begin{array}{c}
l_0 \\
l_0 + \Delta t \\
t \\
\end{array}
\]

関数 \(D(t) \) のラプラス変換（以下、単に \(L \) 変換と記す）は、

\[
L(D(t);s) = \int_{t_0}^{\infty} e^{-st}D(t)dt = \frac{1}{\Delta t} \left(\frac{e^{-s\Delta t}}{s} - \frac{e^{-s\Delta t} - 1}{s^{\Delta t}} \right) = e^{-st_0} \left(1 - e^{-s}\Delta t \right)
\]

上式の右辺 \((\cdots)\) の指数関数をべき級数展開して、\(\Delta t \to 0 \) の極限をとると、

\[
\lim_{\Delta t \to 0} L(D(t);s) = e^{-st_0} \left(1 - (1 - s\Delta t + \frac{1}{2}(s\Delta t)^2 + \cdots) \right) = e^{-st_0} \hspace{1cm} (3)
\]

を得る。以下、変換では \(\lim \) と積分の順序の交換可能を仮定する：

\[
\lim_{\Delta t \to 0} L(D(t);s) = L \left(\lim_{\Delta t \to 0} D(t);s \right)
\]

ここに、\(\lim_{\Delta t \to 0} D(t) \) は、面積の大きさ1を保って \(\Delta t \to 0 \) であることである。このことを形式的に、

\[
\int_{t_0}^{\infty} D(t-t_0)dt = 1, \hspace{0.5cm} D(t-t_0) = \begin{cases}
\infty & (t = t_0) \\
0 & (t \neq t_0)
\end{cases}
\] \hspace{1cm} (4)

と書く。普通は \(D \) の代わりに \(\delta \) を用いてデルタ関数（delta function）という。\(D(t) \) の (2) 式を用いて、

\[
\lim_{\Delta t \to 0} D(t) = \lim_{\Delta t \to 0} \int_{t_0}^{\infty} e^{-st} \left(H(t-t_0) - H(t-(t_0+\Delta t)) \right) dt = \delta(t-t_0) \hspace{1cm} (5)
\]

と書く。これを "Heaviside 関数の微分は \(\delta \) 関数" という。\((3),(5)\) 式から \(\delta \) 関数の \(L \) 変換を、

\[
L(\delta(t-t_0)) = \int_{t_0}^{\infty} e^{-st} \delta(t-t_0)dt = e^{-st_0} \quad \overset{t_0 \to 0}{\longrightarrow} \quad L(\delta(t)) = 1. \hspace{1cm} (6)
\]

上式を "デルタ関数の \(L \) 変換は \(e^{-st_0} \) (移動演算子：shift operator)"、あるいは、"デルタ関数の \(L \) 変換は 1" という。\((7)\) 式は、積分値が一つ \(t_0 \) の関数値 \(e^{-st_0} \) で与えられると解釈する。そこで、\(e^{-st} \to f(t) \) と書き替えて、

\[
\int_{0}^{\infty} \delta(t-t_0)f(t)dt = f(t_0)
\]

と書く。更に、下限の積分領域を \(0 \to -\infty \) と拡張しても積分値に係わらないので、

\[
\int_{-\infty}^{\infty} \delta(t-t_0)f(t)dt = f(t_0)
\] \hspace{1cm} (7)

*Heaviside 関数（unit-step 関数ともいう）の定義式とその \(L \) 変換：

\[
H(t-t_0) = \begin{cases}
1 & (t > t_0) \\
0 & (t < t_0)
\end{cases}, \hspace{0.5cm} L(H(t-t_0)) = \frac{e^{-st_0}}{s} \quad \overset{t_0 \to 0}{\longrightarrow} \quad L(H(t)) = \frac{1}{s}
\]
これが汎関数表示の \(\delta \) 関数の定義式になる。

デルタ関数の高次導関数*の \(L \) 変換を同様の方法で導くことができる。デルタ関数の一階微分を Heaviside 関数を用いて

\[
\frac{d\delta(t-t_0)}{dt} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \{ \delta(t-t_0) - \delta(t-(t_0+\Delta t)) \} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\frac{H(t-t_0) - H(t-(t_0+\Delta t))}{\Delta t} - \frac{H(t-(t_0+\Delta t)) - H(t-(t_0+2\Delta t))}{\Delta t} \right] = \lim_{\Delta t \to 0} \left(\frac{1}{\Delta t} \right) \{ H(t-t_0) - 2H(t-(t_0+\Delta t)) + H(t-(t_0+2\Delta t)) \}
\]

上式の \(\cdots \) の関数形を図示する（下左図参照）: これらの \(L \) 変換をとり、\(\Delta t \to 0 \) の極限をとれば、

\[
\lim_{\Delta t \to 0} \left(\frac{1}{\Delta t} \right) \left(e^{-st_0} - 2e^{-st_0+2\Delta t} + e^{-st_0+3\Delta t} \right) = s e^{-st_0} = L(\delta^{(0)}(t-t_0))
\]

を得る。上式で \(t_0 = 0 \) とおけば、

\[
L(\delta^{(0)}(t)) = s
\]

\[
H(t-t_0) - 3H(t-(t_0+\Delta t)) + 3H(t-(t_0+2\Delta t)) - H(t-(t_0+3\Delta t))
\]

となる。同様な手続きで、デルタ関数の二階微分を

\[
\frac{d^2\delta(t-t_0)}{dt^2} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ \frac{d\delta(t-t_0)}{dt} - \frac{d\delta(t-(t_0+\Delta t))}{dt} \right\} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ \frac{H(t-t_0) - 3H(t-(t_0+\Delta t)) + 3H(t-(t_0+2\Delta t)) - H(t-(t_0+3\Delta t))}{\Delta t} \right\}
\]

と書ける。上式の \(\cdots \) の関数形を図示する（上右図参照）: これらの \(L \) 変換をとり、\(\Delta t \to 0 \) の極限をとれば、

\[
\lim_{\Delta t \to 0} \left(\frac{1}{\Delta t} \right) \left(e^{-st_0} - 3e^{-st_0+\Delta t} + 3e^{-st_0+2\Delta t} + e^{-st_0+3\Delta t} \right) = s^2 e^{-st_0} = L(\delta^{(2)}(t-t_0))
\]

を得る。上式で \(t_0 = 0 \) とおけば、

\[
L(\delta^{(2)}(t)) = s^2
\]

* デルタ関数の導関数の表し方：

\[
\frac{d^n \delta(t)}{dt^n} = \delta^{(n)}(t) = \delta^{(\cdots)}(t), \text{ 但し, } \delta^{(n)}(t) = \delta(t)
\]
となる。これらの手続きを繰り返せば、即ち、デルタ関数の高次導関数を Heaviside 関数を用いて

$$\delta^{(n)}(t-t_0) = \lim_{ \Delta t \to 0 } \frac{1}{(\Delta t)^n} \sum_{k=0}^{n} C_k (-1)^k H(t-(t_0+k\Delta t))$$

と表し、その L 変換をとれば (\(\Delta t \to 0\)) 、

$$L(\delta^{(n)}(t-t_0)) = s^n e^{-st}, \quad L(\delta^{(n)}(t)) = s^n$$ \((8) \)

を得る。

最後にデルタ関数の導関数に関する公式を付け加えておく。（7）式において、\(\delta(t) \to \delta^{(n)}(t)\) に置き換えると、

$$\int_{-\infty}^{\infty} \delta^{(n)}(t-t_0)f(t)dt = (-1)^n f^{(n)}(t_0) \quad \text{(但し, } f(t) \to 0 \text{ (} t \to \pm \infty \text{))} \quad (9)$$

となる（部分積分を繰り返せばよい）。

ポテンシャルの多重極展開

ポア松方程式

$$\Delta \phi = \rho$$ \((10) \)

の特解は、Green 関数 \(G(\vec{r}) (= G(x,y,z))\)

$$\Delta G(\vec{r}) = \delta(\vec{r}) \text{ の解（主要解ともいう）} ; \quad G(\vec{r}) = \frac{1}{4\pi} \frac{1}{|\vec{r}|}$$

が既知であれば、

$$\phi = G \ast \rho = \frac{1}{4\pi} \int_{V} \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|} \, d\vec{r}' \quad (d\vec{r}' = dx' dy' dz') \quad (11)$$

と書ける（図 1 参照）。ここに、\(\ast\) は積込み積（convolution）、\(\phi\) はスカラーポテンシャル（scalar potential）、\(\rho\) は電荷の密度分布（volume density of electric charge）を表す。上式は体積 \(V\) 内に密度分布 \(\rho\) が與えられたとき、それによる位置 \(\vec{r} \quad (|\vec{r}| = r >> r' = |\vec{r}'|)\) でのポテンシャル \(\phi(\vec{r})\) を決めるものである。式の簡素化のため、以下、係数 \(\frac{1}{4\pi}\) を省略する。

![図1: 荷分布が作るポテンシャル](image)

今、\(r >> r'\) として、

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r} \right)^n P_n(\cos \theta')$$

を原点のまわりで \(\frac{r'}{r}\) のベキ級数展開する（付録 1 参照）：

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r} \right)^n P_n(\cos \theta')$$
\(P_n(\cos \theta') \) はルジャンドルの多項式* (\(\cos \theta' \) の \(\theta' \) は 位置ベクトル \(\mathbf{r} \) と \(\mathbf{r}' \) のなす角) である。上式を特解 (11) 式に代入すればポテンシャルの多重極展開式を得る。

\[
\phi (\mathbf{r}) = \int \rho (\mathbf{r}) \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r} \right)^n P_n (\cos \theta') d\mathbf{r}'
\]

\[
= \frac{1}{r} \int \rho (\mathbf{r}) d\mathbf{r}' + \frac{1}{r^2} \int \rho (\mathbf{r}) r' P_1 (\cos \theta') d\mathbf{r}' + \frac{1}{r^3} \int \rho (\mathbf{r}) r'^2 P_2 (\cos \theta') d\mathbf{r}' + \cdots
\]

\[
= \sum_{n=0}^{\infty} \phi_n (\mathbf{r})
\]

縦状多極子の作るポテンシャル

一般的な考察を行う準備として、縦状電荷 (\(x \) 軸上に分布する) の作るポテンシャルという特別な場合について具体的な表式を書き下そう。

\[
\phi (\mathbf{r}) = \int \rho (x) \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{x}{r} \right)^n P_n (\cos \theta') dx
\]

\[
= \frac{1}{r} \int \rho (x) dx + \frac{P_1 (\cos \theta)}{r} \int \rho (x) x dx + \frac{P_2 (\cos \theta)}{r^2} \int \rho (x) x^2 dx + \frac{P_3 (\cos \theta)}{r^3} \int \rho (x) x^3 dx + \cdots
\]

\[
= \sum_{n=0}^{\infty} \phi_n (\mathbf{r})
\]

ここに、\(\cos \theta \) の \(\theta \) は \(x \) 軸と \(r \) 方向のなす角である。上式の \(\phi_n \) の項の中で \(\frac{P_n (\cos \theta)}{r^n} \) を \(n \) 極子のポテンシャル、\(\int \rho (x) x^n dx (= \rho (\mathbf{r})) \) を \(n \) 極子のモーメント、単に \(n \) 次のモーメントと呼ぶ。\(n = 1 \)

から 5 までのモーメントとポテンシャルの関数形を次表にまとめておく：

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n)極子</th>
<th>(n)極子モーメント</th>
<th>((n)極子)ポテンシャル</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>単極子</td>
<td>(\int \rho (x) dx)</td>
<td>(\frac{1}{r} \int \rho (x) dx)</td>
</tr>
<tr>
<td>2</td>
<td>双極子</td>
<td>(\int \rho (x) x dx)</td>
<td>(\frac{P_1 (\cos \theta)}{r^2})</td>
</tr>
<tr>
<td>3</td>
<td>四極子</td>
<td>(\int \rho (x) x^2 dx)</td>
<td>(\frac{P_2 (\cos \theta)}{r^3})</td>
</tr>
<tr>
<td>4</td>
<td>八極子</td>
<td>(\int \rho (x) x^3 dx)</td>
<td>(\frac{P_3 (\cos \theta)}{r^4})</td>
</tr>
<tr>
<td>5</td>
<td>十六極子</td>
<td>(\int \rho (x) x^4 dx)</td>
<td>(\frac{P_4 (\cos \theta)}{r^5})</td>
</tr>
</tbody>
</table>

縦状の任意の位置に点電荷 \(q \) があるとき、その点から距離 \(r \) 離れた点のポテンシャルは、

\[
\phi_0 (\mathbf{r}) = \frac{q}{r}
\]

縦状 (\(x \) 軸上とする) の点電荷 \(q \) を密度分布で表すると、

\[
\rho (x) = q \delta (x)
\]

単極子のモーメントは定義式から、

\[
\rho (\mathbf{r}) = \int \rho (x) dx = q \int \delta (x) dx = q
\]

* \(P_0 (\cos \theta') = 1 \), \(P_1 (\cos \theta') = \cos \theta' \), \(P_2 (\cos \theta') = \frac{1}{2} (3 \cos^2 \theta' - 1) \), \(P_3 (\cos \theta') = \frac{1}{2} (5 \cos^3 \theta' - 3 \cos \theta') \), \(P_4 (\cos \theta') = \frac{1}{8} (35 \cos^4 \theta' - 30 \cos^2 \theta' + 3) \)
図2：単極子・双極子が作るポテンシャル

次に、原点に点電荷q（単極子）があり、微小距離d離れた点Aに逆符号の点電荷$-q$（逆符号の単極子）がおかれたものを双極子と呼ぶ。その双極子による距離r離れた点のポテンシャル$(d << r, r_A, r_B)$（図2参照）は、

$$\phi(r) = q \left(\frac{1}{r} - \frac{1}{r_A} \right), \quad r_A = \sqrt{r^2 + d^2 - 2rd \cos \theta}$$

\[(1) \]

\[
\frac{1}{r_A} \text{を展開して（付録I参照）,}
\]

$$\phi(r) = q \frac{d \cos \theta}{r^2} = dq \frac{\cos \theta}{r} = dq \frac{P_1(\cos \theta)}{r} \quad \text{cos} \theta = \frac{x}{r}$$

\[(2) \]

05式で、$d \to 0$の極限をとると、

$$\lim_{d \to 0} \phi(r) = q \lim_{d \to 0} \left(\frac{1}{r} - \frac{1}{r_A} \right) = q \frac{d \partial}{\partial x} \left(\frac{1}{r} \right) = d \frac{\partial}{\partial x} \phi_s(r)$$

となる（但し、$d \to 0$のとき、qdは一定）。この式の意味は、高次のポテンシャルが低次のそれからの微分によって導かれる、ことを示している。双極子のx軸上の電荷の密度分布は、

$$\rho(x) = q (\delta(x) - \delta(x - d)) \xrightarrow{d \to 0} dq \delta^u(x) = dq \delta^u(x)$$

\[(3) \]

dq（距離×電気量）を双極子モーメントと呼ぶ。モーメントの定義式から、

$$p^u = \int \rho(x) dx = q \int (\delta(x) - \delta(x - d)) dx \xrightarrow{d \to 0} dq \int \delta^u(x) dx = dq(-1)(x)' = (-1)dq$$

ここで、$(x)'$は微分することである。

原点に双極子があり、微小距離d離れた点に逆符号の双極子がおかれたものを四極子と呼ぶ。それによる距離r離れた点のポテンシャル$(d << r, r_A, r_B)$は（図3参照）

$$\phi(r) = q \left(\frac{1}{r} - \frac{2}{r_A} + \frac{1}{r_B} \right)$$

\[(4) \]

$$= q \frac{d^2(\cos^2 \theta - 1)}{r^2} = 2dq \frac{1}{r^2} \left(\cos^2 \theta - 1 \right) = 2dq \frac{P_1(\cos \theta)}{r^2}$$

\[(5) \]

08式で、$d \to 0$の極限をとると、

$$\lim_{d \to 0} \phi(r) = q \lim_{d \to 0} \left(\frac{1}{r} - \frac{2}{r_A} + \frac{1}{r_B} \right) = q \frac{d^2}{dx^2} \left(\frac{1}{r} \right) = dq \frac{d^2}{dx^2} \phi_s(r)$$

四極子のx軸上の電荷の密度分布は、

$$\rho(x) = q (\delta(x) - 2 \delta(x - d) + \delta(x - 2d)) \xrightarrow{d \to 0} dq \delta^u(x) = dq \delta^u(x)$$

\[(6) \]
四極子モーメントの定義式から、

\[\rho^{(2)} = \int \rho(x) x^2 dx = q \int \delta(x) - 2 \delta(x - d) + \delta(x - 2d) x^2 dx \]

\[\lim_{d \to 0} q d^2 \int \delta^{(2)}(x) x^2 dx = d^2 q \left(-2\right)^2(x2)^2 = 2d^2 q \]

図3：四極子が作るポテンシャルと八極子

同様の手続きに従って、八極子によるポテンシャルは、

\[\phi(r) = q \left(\frac{1}{r} - \frac{3}{r_a} + \frac{3}{r_b} - \frac{1}{r_c} \right) \]

\[= q \frac{3d^4 (5\cos^2 \theta - 3\cos \theta)}{r^4} = 3d^4 q \frac{\frac{1}{2} (5\cos^2 \theta - 3\cos \theta)}{r^4} = 6d^4 q \frac{P_3(\cos \theta)}{r^3} \]

八極子のx軸上の電荷の密度分布は、

\[\rho(x) = q(\delta(x) - 3\delta(x - d) + 3\delta(x - 2d) - \delta(x - 3d)) \lim_{d \to 0} q d^4 \delta^{(2)}(x) = d^4 q \delta^{(2)}(x) \]

以上の線状点電荷の分布によるモーメントとポテンシャルの関数形を次表にまとめた：

<table>
<thead>
<tr>
<th>点電荷の配置</th>
<th>多極子モーメント</th>
<th>(多極子)ポテンシャル</th>
<th>微分形でのポテンシャル</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>q</td>
<td>(\frac{P_0(\cos \theta)}{r})</td>
<td>(\frac{1}{r})</td>
</tr>
<tr>
<td>. .</td>
<td>d q</td>
<td>(\frac{P_1(\cos \theta)}{r^2})</td>
<td>(\frac{1}{r^2}) (\frac{\partial \theta}{\partial x}) (\frac{1}{r})</td>
</tr>
<tr>
<td>. . .</td>
<td>2d^2 q</td>
<td>(\frac{P_2(\cos \theta)}{r^3})</td>
<td>(\frac{1}{r^3}) (\frac{(-1)^2 \partial^2 \theta}{\partial x^2}) (\frac{1}{r})</td>
</tr>
<tr>
<td>.</td>
<td>6d^4 q(3l = 6)</td>
<td>(\frac{P_3(\cos \theta)}{r^4})</td>
<td>(\frac{1}{r^4}) (\frac{(-1)^3 \partial^3 \theta}{\partial x^3}) (\frac{1}{r})</td>
</tr>
<tr>
<td>.</td>
<td>24d^6 q(4l = 24)</td>
<td>(\frac{P_4(\cos \theta)}{r^5})</td>
<td>(\frac{1}{r^5}) (\frac{(-1)^4 \partial^4 \theta}{\partial x^4}) (\frac{1}{r})</td>
</tr>
</tbody>
</table>

上記の考察から、モーメントとポテンシャルについて次の関係式

\[\rho^{(n+1)} = (n+1) \rho^{(n)} d, \quad \frac{P_n(\cos \theta)}{r^{n+1}} = \frac{(-1)^n}{n!} \frac{\partial^n \theta}{\partial x^n} \frac{1}{r} \]

を得る。また、電荷の密度分布 \(\rho \) について、デルタ関数とそれらの導関数によって次のような展開が可能であることを示唆している：

\[\rho(x) = q \delta(x) + d \delta^{(1)}(x) + d^2 \delta^{(2)}(x) + d^3 \delta^{(3)}(x) + \cdots \]
電荷の密度分布関数の展開による多重極展開

ポアソン方程式の特解 (11) 式は量込み型なので、

\[f(\vec{r}) = \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r}' = \int \frac{\rho(\vec{r} - \vec{r}')}{|\vec{r}'|} d\vec{r}' \]

(23)

とも書ける。そこで、電荷の密度分布 \(\rho \) をデルタ関数とそれらの導関数によって展開する：

\[\rho(\vec{r} - \vec{r}') = \sum_{n=0}^{\infty} c_n \delta^{(n)}(\vec{r} - \vec{r}') \]

(24)

この展開式を上式の最右辺の特解に代入すると、ポテンシャルの多重極展開式に等価なものが得られるはずである：

\[f(\vec{r}) = \int \frac{1}{|\vec{r}|} \sum_{n=0}^{\infty} c_n \delta^{(n)}(\vec{r} - \vec{r}') d\vec{r}' \]

\[= c_0 \int \frac{1}{|\vec{r}|} \delta(\vec{r} - \vec{r}') d\vec{r}' + c_1 \int \frac{1}{|\vec{r}|} \delta^{(1)}(\vec{r} - \vec{r}') d\vec{r}' + c_2 \int \frac{1}{|\vec{r}|} \delta^{(2)}(\vec{r} - \vec{r}') d\vec{r}' + \cdots \]

(25)

展開係数 \(c_n \) を決めるには、多重極展開 (12) 式の各項を具体的に書き下しておかねばならない。

\[\phi_0(\vec{r}) = \frac{1}{r} \int \rho(\vec{r}') d\vec{r}' = \frac{q}{r}, \quad q = \int \rho(\vec{r}') d\vec{r}' \]

(26)

\[\phi_1(\vec{r}) = \frac{1}{r} \int r' P_1(\cos \theta') \rho(\vec{r}') d\vec{r}' = \frac{1}{r^2} \int r' \cos \theta' \rho(\vec{r}') d\vec{r}' = \frac{1}{r} \int \vec{r}' \rho(\vec{r}') d\vec{r}' \]

(27)

\[\phi_2(\vec{r}) = \frac{1}{r} \int r'^2 P_2(\cos \theta') \rho(\vec{r}') d\vec{r}' = \frac{1}{r^2} \int r'^2 \frac{1}{2} (3 \cos^2 \theta' - 1) \rho(\vec{r}') d\vec{r}' \]

(28)

\[Q = \sum_{n=0}^{\infty} Q_{l,n} \quad (Q_{l,n} \text{ は 付録 II 参照}) \]

展開式 (25) 式の各項を計算して係数 \(c_n \) を決める：

\[\phi_0(\vec{r}) = c_0 \int \frac{1}{|\vec{r}'|} \delta(\vec{r} - \vec{r}') d\vec{r}' = c_0 \frac{1}{r}, \quad c_0 = q = \int \rho(\vec{r}') d\vec{r}' \]

(29)

\[\phi_1(\vec{r}) = c_1 \int \frac{1}{|\vec{r}'|} \delta^{(1)}(\vec{r} - \vec{r}') d\vec{r}' = c_1 (-1) \nabla \left(\frac{1}{r} \right) = c_1 \frac{\vec{r}}{r^2}, \quad c_1 = \vec{p} = \int \vec{r}' \rho(\vec{r}') d\vec{r}' \]

(30)

\[\phi_2(\vec{r}) = c_2 \int \frac{1}{|\vec{r}'|} \delta^{(2)}(\vec{r} - \vec{r}') d\vec{r}' = c_2 \nabla \otimes \nabla \left(\frac{1}{r} \right), \quad c_2 = Q \]

(31)

\[\vdots \]

多重極展開 (12) 式と (25) 式が等価であることから、等ベキ項の比較から係数 \(c_n \) を得る。\(c_n \) は多極子のモーメントの表式に応じていることがわかる。

付録 I： \(|\vec{r} - \vec{r}'|^{-1} \) のベキ級数展開

\[\frac{1}{|\vec{r} - \vec{r}'|} \text{ を } \frac{\vec{r}'}{|\vec{r}|} \quad (<< 1) \text{ のベキ級数に展開する（図 1 参照）} : \]

\[|\vec{r} - \vec{r}'| = \sqrt{r^2 + r'^2 - 2rr' \cos \theta'} = r \sqrt{1 + \left(\frac{r'}{r} \right)^2 - 2 \left(\frac{r'}{r} \right) \cos \theta'} \]
\[
\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} \sqrt{1 + \left(\frac{\vec{r}'}{r}\right)^2 - 2\left(\frac{\vec{r}'}{r}\right) \cos \theta'} = \frac{1}{r} (1 + x)^{-\frac{1}{2}}, \quad x = \left(\frac{r'}{r}\right)^2 - 2\left(\frac{r'}{r}\right) \cos \theta'
\]

二項展開

\((1 + x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{1}{2} \cdot \frac{3}{2} x^2 - \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} x^3 + \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2} x^4 - \cdots \)

を用いて、

\[
\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} \left(1 + \frac{r'}{r} \cos \theta' + \frac{1}{2} \left(\frac{r'}{r}\right)^2 (3 \cos^2 \theta' - 1) + \frac{1}{2} \left(\frac{r'}{r}\right)^3 (5 \cos^3 \theta' - 3 \cos \theta') + \frac{1}{8} \left(\frac{r'}{r}\right)^4 (35 \cos^4 \theta' - 30 \cos^2 \theta' + 3) + \cdots\right)
\]

\[
= \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos \theta')
\]

ここに、\(P_n(\cos \theta')\) はルジャンドル多項式である：

\[
P_n(\cos \theta') = P_n(\xi) = \frac{1}{2^n n!} d^n \left(\frac{d}{d \xi}\right)^n (\xi^2 - 1)^n
\]

付録 II：|\vec{r} - \vec{r}'|^{-1} の座標微分

\(\vec{r} = (x, y, z), \quad \vec{r}' = (X, Y, Z)\)

\[
\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{R} = \frac{1}{\sqrt{(x-X)^2 + (y-Y)^2 + (z-Z)^2}}, \quad R = \sqrt{(x-X)^2 + (y-Y)^2 + (z-Z)^2}
\]

\[
\frac{\partial}{\partial x} \left(\frac{1}{R}\right) = -\frac{x-X}{R^3}, \quad \frac{\partial}{\partial X} \left(\frac{1}{R}\right) = -\frac{x-X}{R^3}
\]

\[
\frac{\partial}{\partial x} \left(\frac{1}{R}\right) = -\frac{\partial}{\partial X} \left(\frac{1}{R}\right)
\]

\[
\left\{\begin{array}{l}
\frac{\partial^2}{\partial x^2} \left(\frac{1}{R}\right) = \frac{\partial}{\partial X} \left(\frac{x-X}{R^3}\right) = -\frac{1}{R} + \frac{3(x-X)^2}{R^5} = -\frac{1}{R} + \frac{3}{R^5} \frac{\partial}{\partial X} n = Q_{xx} \\
\frac{\partial^2}{\partial y^2} \left(\frac{1}{R}\right) = \frac{\partial}{\partial Y} \left(\frac{x-X}{R^3}\right) = \frac{(x-X)(y-Y)}{R^5} = \frac{1}{R} \frac{\partial}{\partial Y} n = Q_{xy} \\
\frac{\partial^2}{\partial z^2} \left(\frac{1}{R}\right) = \frac{\partial}{\partial Z} \left(\frac{x-X}{R^3}\right) = \frac{(x-X)(z-Z)}{R^5} = \frac{1}{R} \frac{\partial}{\partial Z} n = Q_{xz}
\end{array}\right.
\]

\[
\nabla \otimes \nabla \left(\frac{1}{R}\right) = \begin{pmatrix}
Q_{xx} & Q_{xy} & Q_{xz} \\
Q_{yx} & Q_{yy} & Q_{yz} \\
Q_{zx} & Q_{zy} & Q_{zz}
\end{pmatrix}
\]

ここに、\(\nabla \otimes \nabla\) はテンソル演算子である。左辺は二階の対称テンソルである。対角項の和は、

\[
Q_{xx} + Q_{yy} + Q_{zz} = -\frac{3}{R^2} + \frac{3R^2}{R^3} = 0
\]

（平成12年11月27日受理）