行列と連立線形微分方程式

藤島勝弘*・菅原道弘**

Matrices and Linear Systems of Differential Equations

FUJISHIMA Katsuhio, SUGAWARA Michihiro

要 旨

行列の固有値・固有ベクトルの応用範囲は広い。連立微分方程式もいろいろの場合に用いられる。この度、固有値・固有ベクトルを利用して、連立微分方程式を解くことを試みた。両者の関係に学生は驚いた。

Abstract

Eigenvalues and eigenvectors of matrix are widely applied, and systems of differential equations are used in various cases. And therefore we tried to solve the linear systems of differential equations with eigenvalue and the eigenvector. Students were surprised at the unexpected relation between the two.

1 はじめに

平成17年度現在、本校（立命館大学高等専門学校）の数学のカリキュラムは過渡期にある。線形変換や固有値・固有ベクトルは3年生の前期から後期の1/4期くらいまでで終えている。微分方程式については3年生の後期後半、4年生の前期（このことは今年度で終了）で扱っている。時期的には、固有値・固有ベクトルの学習が終わってから連立微分方程式を扱うので、応用の一例としては都合が良い。ただ本校では固有値・固有ベクトルの応用として、行列の対角化・2次形式の標準化・行列のべき乗までの扱いである。従って、今回は指数行列を利用していない。

2 具体例

定数係数線形連立微分方程式の解法を示す。演算子を利用する解法は便利で使いやすい。我々のねらいは、行列と連立微分方程式の間に密接な関係があることを学生に知ってもらうことである。

問題1 次の連立微分方程式を解け。

\[
\begin{align*}
\frac{dx_1}{dt} &= 18x_1 - 12x_2 \\
\frac{dx_2}{dt} &= 20x_1 - 13x_2
\end{align*}
\]

【解 1】行列を用いると次のようにになる。

\[
\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 18 & -12 \\ 20 & -13 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
\]

\[
A = \begin{pmatrix} 18 & -12 \\ 20 & -13 \end{pmatrix}
\]

とおくと、

\[
\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
\]

……(1)

また、\(\det(A - \lambda E) = 0 \)（\(E \)は単位行列、以下同様）よ
\[
\begin{vmatrix}
18 - \lambda & -12 \\
20 & -13 - \lambda \\
\end{vmatrix} = 0
\]
\[
\therefore \lambda^2 - 5\lambda + 6 = 0
\]
\[
\therefore \lambda = 2, 3 \quad \text{(固有値)}
\]
固有ベクトルを求めると、

i) \quad \lambda = 2 のとき，\(\alpha \begin{pmatrix} 3 \\ 4 \end{pmatrix} \)

ii) \quad \lambda = 3 のとき，\(\beta \begin{pmatrix} 4 \\ 5 \end{pmatrix} \)

ただし，\(\alpha, \beta \) は 0 でない任意の実数とする。（以下同様）

ここで，\(P = \begin{pmatrix} 3 & 4 \\ 4 & 5 \end{pmatrix} \) とおくと，\(P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \)

（対角化）

また，\(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = P \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \) とおくと，\(\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = P \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} \) ……（2）

とおくと，行列 \(P \) は定数行列なので

\[
\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = P \frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}
\]

（1），(2)，(3) より，\(\frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = P^{-1}AP \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \)

\[
\therefore \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}
\]

\[
\therefore \begin{cases} y_1' = 2y_1 \\ y_2' = 3y_2 \end{cases}
\]

\[
\therefore \begin{cases} y_1 = C_1e^{2t} \\ y_2 = C_2e^{3t} \end{cases}
\]

（\(C_1, C_2 \) は任意定数）（以下同様）

よって，

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} C_1e^{2t} \\ C_2e^{3t} \end{pmatrix} = \begin{pmatrix} 3C_1e^{2t} + 4C_2e^{3t} \\ 4C_1e^{2t} + 5C_2e^{3t} \end{pmatrix}
\]

\[
\therefore \begin{cases} x_1 = 3C_1e^{2t} + 4C_2e^{3t} \\ x_2 = 4C_1e^{2t} + 5C_2e^{3t} \end{cases}
\]

問題 2 次の連立微分方程式を解け。

\[
\begin{cases}
\frac{dx_1}{dt} = 2x_1 + 4x_2 \\
\frac{dx_2}{dt} = -x_1 + 6x_2
\end{cases}
\]

[解 1] 与えられた連立微分方程式より，

\[
\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
\]

\[
A = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix}
\]

また，\(\det(A - \lambda E) = 0 \) より，

\[
\begin{vmatrix} 2 - \lambda & 4 \\ -1 & 6 - \lambda \end{vmatrix} = 0
\]

\[
\therefore (\lambda - 4)^2 = 0
\]

\[
\therefore \lambda = 4 \quad \text{(2 重解) (固有値)}
\]

固有ベクトルを求めると，

\[
\lambda = 4 のとき，\alpha \begin{pmatrix} 2 \\ 1 \end{pmatrix}
\]

次に，\(A - \lambda E \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \)
すなわち,
\[
\begin{pmatrix}
-2 & 4 \\
-1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
2 \\
1
\end{pmatrix}
\]を満たす \(u_1, u_2\)の組を1つ求めるといつて,
\[
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
-1 \\
0
\end{pmatrix}
\]
とおくとき,
\[
P =
\begin{pmatrix}
2 & -1 \\
0 & 1
\end{pmatrix}
\]とおくと,
\[P^{-1}AP =
\begin{pmatrix}
4 & 1 \\
0 & 4
\end{pmatrix}
\]
と三角化される。
\[
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
=
P
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}
\]
とおくと, 問題1のときと同様に,
\[
\begin{align*}
\frac{d}{dt}
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}
&=
P^{-1}AP
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} \\
\begin{cases}
y'_1 = 4y_1 + y_2 \\
y'_2 = 4y_2
\end{cases}
\]
(2)より,
\[y_2 = C_2 e^{4t}\]
これを(1)より,
\[y'_1 - 4y_1 = C_2 e^{4t}\]
これを解いて,
\[
y_1 = C_1 e^{4t} + C_2 e^{2t}
\]
\[\therefore \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
=
\begin{pmatrix}
2 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
C_1 e^{4t} + C_2 e^{2t} \\
C_2 e^{4t}
\end{pmatrix} = \begin{pmatrix}
(2C_1 - C_2)e^{4t} + 2C_2 e^{2t} \\
C_1 e^{4t} + C_2 e^{2t}
\end{pmatrix}
\]
\[\therefore \begin{cases}
x_1 = (2C_1 - C_2)e^{4t} + 2C_2 e^{2t} \\
x_2 = C_1 e^{4t} + C_2 e^{2t}
\end{cases}
\]
[解1] これを簡単にまとめると次のようなになる。

[解2]
\[
\frac{d}{dt}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
=
\begin{pmatrix}
2 & 4 \\
-1 & 6
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\]
\[A =
\begin{pmatrix}
2 & 4 \\
-1 & 6
\end{pmatrix}
\]
とおくと, \(\text{det}(A - \lambda E) = 0\)より,
\[
\lambda = 4 \quad \text{(2重解)(固有値)}
\]
固有ベクトルを求めると, \(\lambda = 4\)のとき, \(\alpha \begin{pmatrix}2 \\ 1\end{pmatrix}\)
このとき, \((A - \lambda E) \begin{pmatrix}u_1 \\ u_2\end{pmatrix} = \begin{pmatrix}2 \\ 1\end{pmatrix}\)を満たす \(u_1, u_2\)
の1つの組を求めるとき,
\[\begin{pmatrix}u_1 \\ u_2\end{pmatrix} = \begin{pmatrix}-1 \\ 0\end{pmatrix}\]
よって, \(C_1 e^{4t} \begin{pmatrix}2 \\ 1\end{pmatrix}, C_2 e^{4t} \left\{ t \begin{pmatrix}2 \\ 1\end{pmatrix} + \begin{pmatrix}-1 \\ 0\end{pmatrix} \right\}\)は解となる。
従って求める解は,
\[
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
=
C_1 e^{4t} \begin{pmatrix}2 \\ 1\end{pmatrix} + C_2 e^{4t} \left\{ t \begin{pmatrix}2 \\ 1\end{pmatrix} + \begin{pmatrix}-1 \\ 0\end{pmatrix} \right\} \\
=
\begin{pmatrix}
(2C_1 - C_2)e^{4t} + 2C_2 e^{2t} \\
C_1 e^{4t} + C_2 e^{2t}
\end{pmatrix}
\]
ゆえに求める解（実数値関数のもの）は、

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} = C_1 e^{3t} \begin{pmatrix}
 \cos t \\
 \sin t
\end{pmatrix} - C_2 e^{3t} \begin{pmatrix}
 -\cos t + \sin t \\
 \cos t + \sin t
\end{pmatrix}
\]

\[
= e^{3t} \left\{(C_1 \cos t + C_2 \sin t) \cos t + (C_1 - C_2) \sin t \right\}
\]

\[
\therefore x_1 = e^{3t} (C_1 \cos t + C_2 \sin t)
\]

\[
x_2 = e^{3t} [(C_1 - C_2) \cos t + (C_1 + C_2) \sin t]
\]

[解 2] \(\frac{d}{dt} \) を \(D \) とおくと、

\[
\begin{cases}
 (D - 2)x_1 = -x_2 & \cdots (1) \\
 (D - 4)x_2 = 2x_1 & \cdots (2)
\end{cases}
\]

(1). (2) より, \(x_2 \) を消去すると, \((D^2 - 6D + 10)x_1 = 0 \)

特性方程式 \(\lambda^2 - 6\lambda + 10 = 0 \) より, \(\lambda = 3 \pm i \)

\[
\therefore x_1 = C_1 e^{3t} \cos t + C_2 e^{3t} \sin t
\]

これを (1) より,

\[
\therefore \begin{cases}
 x_1 = e^{3t} (C_1 \cos t + C_2 \sin t) \\
 x_2 = e^{3t} [(C_1 - C_2) \cos t + (C_1 + C_2) \sin t]
\end{cases}
\]

続いて非斉次線形連立微分方程式を扱う。

\[
\frac{d}{dt} \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} = A \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} + B
\]

ただし, \(x_1, x_2 \) は \(t \) の関数で, \(A \) は \(2 \times 2 \) 行列, \(B \) は \(2 \times 1 \) 行列とする。

ここで \(\frac{d}{dt} \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} = A \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} \) の基本解行列を \(X = X(t) \) とすると, (1) の一般解は

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} = X \begin{pmatrix}
 C_1 \\
 C_2
\end{pmatrix} + \int \left. X^{-1} B dt \right|
\]

であることを用いる。

問題 4 次の連立微分方程式を解け。

\[
\begin{cases}
 x_1' = 3x_1 - 2x_2 + 2e^t \\
 x_2' = 4x_1 - 3x_2 + 4e^t
\end{cases}
\]

[解 1] 行列を用いると, 次のようになる。

\[
\frac{d}{dt} \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} = \begin{pmatrix}
 3 & -2 \\
 4 & -3
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} + \begin{pmatrix}
 2e^t \\
 4e^t
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
 3 & -2 \\
 4 & -3
\end{pmatrix}
\]

とおくと, \(\det(A - \lambda E) = 0 \) より,

\[
\begin{vmatrix}
 3 - \lambda & -2 \\
 4 & -3 - \lambda
\end{vmatrix} = 0
\]

\[
\therefore \lambda^2 - 1 = 0
\]

\[
\lambda = \pm 1 \quad \text{(固有値)}
\]

固有ベクトルを求めるに, \(\lambda = 1 \) のとき \(\alpha \begin{pmatrix}
 1 \\
 1
\end{pmatrix} \)

\(\lambda = -1 \) のとき \(\beta \begin{pmatrix}
 1 \\
 2
\end{pmatrix} \)

よって,

\[
\begin{pmatrix}
 e^t \\
 e^t
\end{pmatrix} = \begin{pmatrix}
 e^t \\
 e^t
\end{pmatrix}
\]

従って, \(X = \begin{pmatrix}
 e^t \\
 e^t
\end{pmatrix} \) とおくと,

\[
X^{-1} = \begin{pmatrix}
 2e^{-t} & -e^{-t} \\
 -e^t & e^t
\end{pmatrix}
\]

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} = X \begin{pmatrix}
 C_1 \\
 C_2
\end{pmatrix} + X \int \left. X^{-1} B dt \right|
\]

\[
= X \begin{pmatrix}
 C_1 \\
 C_2
\end{pmatrix} + X \begin{pmatrix}
 0 \\
 e^{2t}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 (C_1 + 1)e^t + C_2 e^{-t} \\
 (C_1 + 2)e^t + 2C_2 e^{-t}
\end{pmatrix}
\]

\[
\therefore \begin{cases}
 x_1 = (C_1 + 1)e^t + C_2 e^{-t} \\
 x_2 = (C_1 + 2)e^t + 2C_2 e^{-t}
\end{cases}
\]

[解 2] \(\frac{d}{dt} \) を \(D \) とおくと,

\[
\begin{cases}
 (D - 3)x_1 + 2x_2 = 2e^t \\
 -4x_1 + (D + 3)x_2 = 4e^t
\end{cases}
\]

(1) × (D + 3) – (2) × 2:

\[
(D^2 - 9)x_1 + 2(D + 3)x_2 = 8e^t
\]

\[
-8x_1 + 2(D + 3)x_2 = 8e^t
\]

\[
(D^2 - 9)x_1 = 0
\]

特性方程式 \(\lambda^2 - 1 = 0 \) より, \(\lambda = \pm 1 \)

よって, \(x_1 = C_1 e^t + C_2 e^{-t} \)

これと (1) より, \(x_2 = C_1 e^t + 2C_2 e^{-t} + e^t \)

\[
\begin{cases}
 x_1 = C_1 e^t + C_2 e^{-t} \\
 x_2 = C_1 e^t + 2C_2 e^{-t} + e^t
\end{cases}
\]

問題 5 次の連立微分方程式を解け。

\[
\begin{cases}
 \frac{dx_1}{dt} = -2x_1 + 2x_2 + 6t \\
 \frac{dx_2}{dt} = -x_1 - 5x_2
\end{cases}
\]

[解 1] 行列を用いると,
\[
\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 6t \\ 0 \end{pmatrix}
\]

\[A = \begin{pmatrix} -2 & 2 \\ 1 & -5 \end{pmatrix}\text{ とおくと。det}(A - \lambda E) = 0\text{ より。}
\]

\[
\begin{vmatrix} -2 - \lambda & 2 \\ 1 & -5 - \lambda \end{vmatrix} = 0
\]

\[
\therefore \lambda^2 + 7\lambda + 12 = 0
\]

\[
\therefore \lambda = -3, -4\text{（固有値）}
\]

固有ベクトルを求めるとき、

i) \(\lambda = -3 \) のとき，\(\alpha \begin{pmatrix} 2 \\ -1 \end{pmatrix} \)

ii) \(\lambda = -4 \) のとき，\(\beta \begin{pmatrix} -1 \\ 1 \end{pmatrix} \)

よって，

\[e^{-3t} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2e^{-3t} \\ -e^{-3t} \end{pmatrix}\]

\[e^{-4t} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -e^{-4t} \\ -e^{-4t} \end{pmatrix}\]

従って，\(X = \begin{pmatrix} 2e^{-3t} & -e^{-4t} \\ -e^{-3t} & e^{-4t} \end{pmatrix} \) とおくと、

\[X^{-1} = \begin{pmatrix} e^{3t} & e^{4t} \\ e^{-3t} & 2e^{-4t} \end{pmatrix}\]

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = X^{-1} \begin{pmatrix} 6t \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = X^{-1} \begin{pmatrix} 6t \\ 0 \end{pmatrix} + \int X^{-1} \begin{pmatrix} 6t \\ 0 \end{pmatrix} dt
\]

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = X^{-1} \begin{pmatrix} 6t \\ 0 \end{pmatrix} + X^{-1} \begin{pmatrix} 2e^{3t} - \frac{2}{3}e^{4t} \\ \frac{3}{2}e^{3t} - \frac{3}{2}e^{4t} \end{pmatrix}
\]

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = X^{-1} \begin{pmatrix} 6t \\ 0 \end{pmatrix} + X^{-1} \begin{pmatrix} 2e^{3t} - \frac{2}{3}e^{4t} \\ \frac{3}{2}e^{3t} - \frac{3}{2}e^{4t} \end{pmatrix}
\]

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = X^{-1} \begin{pmatrix} 6t \\ 0 \end{pmatrix} + \begin{pmatrix} 2C_1 e^{-3t} - C_2 e^{-4t} + \frac{5}{2}t - \frac{23}{24} \\ -C_1 e^{-3t} + C_2 e^{-4t} - \frac{1}{2}t + \frac{7}{24} \end{pmatrix}
\]

\[
\begin{pmatrix} x_1 = -2C_1 e^{-3t} - C_2 e^{-4t} + \frac{5}{2}t - \frac{23}{24} \\ x_2 = C_1 e^{-3t} + C_2 e^{-4t} - \frac{1}{2}t + \frac{7}{24} \end{pmatrix}
\]

問題 6 次の連立微分方程式を解け。

\[
\begin{cases}
2x_1' + x_2' = 4x_1 + x_2 + e^t & \cdots (1) \\
x_1' = -3x_1 - x_2 & \cdots (2)
\end{cases}
\]

[解 1]

(1). (2) より，\(x_2' = 10x_1 + 3x_2 + e^t \)

\[
\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} -3 & -1 \\ 10 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ e^t \end{pmatrix}
\]

\[A = \begin{pmatrix} -3 & -1 \\ 10 & 3 \end{pmatrix}\text{ とおくと。det}(A - \lambda E) = 0\text{ より。}
\]

\[
\begin{vmatrix} -3 - \lambda & -1 \\ 10 & 3 - \lambda \end{vmatrix} = 0
\]

\[
\therefore \lambda^2 + 1 = 0
\]

\[
\therefore \lambda = \pm i\text{（固有値）}
\]

固有ベクトルを求めるとき、

i) \(\lambda = i \) のとき，\(\alpha \begin{pmatrix} 1 \\ -3 - i \end{pmatrix} \)

ii) \(\lambda = -i \) のとき，\(\beta \begin{pmatrix} 1 \\ -3 + i \end{pmatrix} \)

ここで、

\[
e^{it} \begin{pmatrix} 1 \\ -3 - i \end{pmatrix} = \begin{pmatrix} \cos t \\ -3 \cos t + \sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ -\cos t - 3\sin t \end{pmatrix}
\]

\[
e^{-it} \begin{pmatrix} 1 \\ -3 + i \end{pmatrix} = \begin{pmatrix} \cos t \\ -3 \cos t + \sin t \end{pmatrix} - i \begin{pmatrix} \sin t \\ -\cos t - 3\sin t \end{pmatrix}
\]

従って，\(X = \begin{pmatrix} \cos t & \sin t \\ -3 \cos t + \sin t & -\cos t - 3\sin t \end{pmatrix} \) とおくと、

\[X^{-1} = \begin{pmatrix} \cos t + 3\sin t & \sin t \\ -3 \cos t + \sin t & -\cos t \end{pmatrix}\]
\[\begin{align*}
\therefore \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} &= X \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} + X \int X^{-1} \begin{pmatrix} 0 \\ e^t \end{pmatrix} dt \\
&= X \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} + X \begin{pmatrix} \frac{1}{2} e^t (\sin t - \cos t) \\ \frac{1}{2} e^t (-\cos t - \sin t) \end{pmatrix} \\
&= \begin{pmatrix} C_1 \cos t + C_2 \sin t - \frac{1}{2} e^t \\ (-3C_1 + C_2) \cos t + (C_1 + 3C_2) \sin t + 2e^t \end{pmatrix}
\end{align*} \]

\[\begin{aligned}
x_1 &= C_1 \cos t + C_2 \sin t - \frac{1}{2} e^t \\
x_2 &= (-3C_1 + C_2) \cos t + (C_1 + 3C_2) \sin t + 2e^t
\end{aligned} \]

\[\therefore \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = C_1 e^{2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + C_2 e^{-3t} \begin{pmatrix} 1 \\ -3 \end{pmatrix} \]

\[y = x_1 \text{ なので, } y = C_1 e^{2t} + C_2 e^{-3t} \]

さらに, 3 階定数係数線形微分方程式を扱う.

問題 8 次の微分方程式を解け.
\[y'''' + 2y''' + 5y'' - 6y = 0 \]

[解]
\[x_1 = y, \quad x_2 = y', \quad x_3 = y'' \text{ とおくと,} \]

\[\begin{aligned}
x_1' &= x_2 \\
x_2' &= x_3 \\
x_3' &= 6x_1 + 5x_2 - 2x_3
\end{aligned} \]

\[\therefore \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 5 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \]

\[A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 5 & -2 \end{pmatrix} \text{ とおくと, } \det(A - \lambda E) = 0 \text{ より,} \]

\[\begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 6 & 5 & -2 - \lambda \end{vmatrix} = 0 \]

\[\therefore (\lambda + 1)(\lambda - 2)(\lambda + 3) = 0 \]

\[\therefore \lambda = -1, 2, -3 \text{ (固有値)} \]

固有ベクトルを求めると,

i) \(\lambda = -1 \text{ のとき, } \alpha \begin{pmatrix} 1 \\ -1 \end{pmatrix} \)

ii) \(\lambda = 2 \text{ のとき, } \beta \begin{pmatrix} 1 \\ 2 \end{pmatrix} \)

iii) \(\lambda = -3 \text{ のとき, } \gamma \begin{pmatrix} 1 \\ -3 \end{pmatrix} \)

固有ベクトルを求めると,
行列表達関数リーフ方式

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
= C_1 e^{-t}
\begin{pmatrix}
 1 \\
 -1 \\
 1
\end{pmatrix}
+ C_2 e^{2t}
\begin{pmatrix}
 1 \\
 2 \\
 4
\end{pmatrix}
+ C_3 e^{-3t}
\begin{pmatrix}
 1 \\
 -3 \\
 9
\end{pmatrix}
\]

\[y = x_1 \text{なので、} \]

\[y = C_1 e^{-t} + C_2 e^{2t} + C_3 e^{-3t}\]

問題7、問題8については、直ちに特性方程式を解く
と、解は簡単に得られるが、連立方程式を変形できることを示した。

3 授業での感想

線形代数の応用として、以上の方法で連立方程式を解くことが出来ることを第4学年の解か jellyで
示した。そのときの学生の主な感想は次の通りである。

- 従来したことの復習を兼ねながら解くことができるので良いと思う。
- 固有値の新たな一面を見た。
- 解法を覚えるのは大変だけど解くのにはかかる時間が短くなってしまわれた。
- 固有値が \(A^n \) とかを解く以外にこんな形で利用できるのは正直感動した。
- 難しいのは解けません。
- 特に何も感じません。
- 意外と簡単に出来たが、かと言ってこれがテストに含まれると色々と紛わしくなる気がします。

4 もう1つの視点から発展

連立方程式

\[
\begin{aligned}
\frac{dx_1}{dt} &= a_{11} x_1 + a_{12} x_2 \\
\frac{dx_2}{dt} &= a_{21} x_1 + a_{22} x_2
\end{aligned}
\]

は、行列を用いると,

\[
\frac{d}{dt}
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
= A
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\]

と表される。

\[
\bar{x} = \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}, \quad A = \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\]

とおくと,

\[
\frac{d}{dt} \bar{x} = A \bar{x}
\]

この微分方程式の解を,

\[
\bar{x} = e^{\alpha t} \bar{u}
\]

ただし, \(\bar{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \), \(u_1, u_2 \) は定数とおくと,

\[
\frac{d}{dt} \bar{x} = \alpha e^{\alpha t} \bar{u}
\]

から \(\alpha \) は行列 \(A \) の固有値で, \(\bar{u} \) はその固有値に対する固有ベクトルとなる。以後, 定数 \(a_{11}, a_{12}, a_{21}, a_{22} \) は実数とする。

1) 行列 \(A \) の固有方程式が異なる2つの実数解 \(\lambda_1, \lambda_2 \) をもつとき,

固有値 \(\lambda_1 \) のときの固有ベクトルを \(\bar{p}_1 \), \(\lambda_2 \) のときの固有ベクトルを \(\bar{p}_2 \) とする。連立方程式 (1) の解は,

\[
\bar{x} = C_1 e^{\lambda_1 t} \bar{p}_1 + C_2 e^{\lambda_2 t} \bar{p}_2
\]

\[
= (C_1 \bar{p}_1 + C_2 \bar{p}_2)
\]

と表される。

2) 行列 \(A \) の固有方程式が2重解 \(\lambda \) をもつとき,

固有値 \(\lambda \), 固有ベクトルを \(\bar{p} \) とする。さらに, \((A - \lambda E) \bar{q} = \bar{p} \) (E は単位行列) を満たす \(\bar{q} \) を1つ定めると,

\[
\bar{x} = e^{\lambda t} (\bar{p} + \bar{q})
\]

も (1) の解となる。連立方程式 (1) の解は,

\[
\bar{x} = C_1 e^{\lambda t} \bar{p}_1 + C_2 e^{\lambda t} (\bar{p} + \bar{q})
\]

と表される。

3) 行列 \(A \) の固有方程式が異なる2つの虚数解 \(\alpha \pm i \beta \) をもつとき,

固有値 \(\alpha + i \beta \) のときの固有ベクトルを \(\bar{p} + i \bar{q} \) とすると、固有値 \(\alpha + i \beta \) のときの固有ベクトルは \(\bar{p} - i \bar{q} \) となる。連立方程式 (1) の解は,

\[
\bar{x} = e^{\alpha t} \left((C_1 \bar{p} + C_2 \bar{q}) \cos \beta t + (C_2 \bar{p} - C_1 \bar{q}) \sin \beta t \right)
\]

\[
\bar{x} = (C_1 \bar{p} + C_2 \bar{q}) e^{\alpha t} \begin{pmatrix}
 \cos \beta t \\
 \sin \beta t
\end{pmatrix}
\]

と表される。

5 おわりに

行列の固有値・固有ベクトルを求める計算は 2×2 行列の場合は簡単であるが、3×3 行列になると手間がか
かる。定数係数線形微分方程式は演算子を利用する方
法なら学生も良く理解する。しかし、連立微分方程式
になると、確かな計算力も必要となり、容易ではない。
連立微分方程式行列を利用するのであるが、やはり
なかなか大変である。特に非斉次の場合は、クラス
全員にとはいかない。しかしながら、これらの例は、か
み砕いて用いれば、知識清旺盛な学生用教材としては
利用価値は高い。固有値・固有ベクトルが微分方程式
の解法においても活かされることが、個々の知識がパ
ララでないことを悟ると良い例となる。

参考文献
1) 小寺平治：テキスト線形代数．共立出版，2002
2) 黒木哲德，小野田信治：TEXT 線形代数．共立出版，2003
3) 黒田正：微分方程式の解法．朝倉書店．1972
4) 加藤義史，三宅正武：微分方程式演習．サイエンス
社，1988
5) 矢野健太郎，石原繁：解析学概論．裳華房，2003
6) 高遠節夫他：新訂微分積分．大日本図書，2004
7) Erwin Kreyszig：ADVANCED ENGINEERING
MATHEMATICS 8TH EDITION．JOHN WILEY &
SONS,INC．1999

（平成17年12月15日受理）