On the Semiranked Group (I)

By Toshitada Shintani*}

Synopsis

In this paper we will give a definition of the \(SR \)-group (namely, Semiranked Group) that is a new notion, and will attempt its general theory.

Introduction:

An abstract space with a mathematical structure\(^5\) \(S \) is called \(S \)-space. If so, \textit{What is the method of \(R \)-spaces?}\(^5\) It is to replace the structure \(T \) in the \(T \)-space (i.e. Topological space) with the structure \(R \).

In this paper we will define a new notion, \(SR \)-group, by the same method as is taken in the definition of the semitopological group.\(^6\) We shall use the same terminology that is introduced in [1] and [2]. And throughout this paper, we shall treat only \(R \)-spaces with indicator \(\omega_0 \). We shall denote the point of an \(R \)-space by \(x, y, z, \ldots \), the family of neighborhoods of \(x \) with rank \(n \) by \(\mathcal{B}_n(x) \), and fundamental sequences of neighborhoods with respect to \(x \)\(^4\) by \(\{u_n(x)\}, \{v_n(x)\}, \ldots \).

\(\S \) 1. Continuous, Homeomorphism.

In this section we will define two new notions, \(r \)-continuous, and \(r \)-homeomorphism.

Definition 1. \(r \)-continuous.

Let \(G \) and \(H \) be two \(R \)-spaces. A mapping \(f \) of \(G \) into \(H \) is said to be \(r \)-continuous if it satisfy next condition:

\[(\ast \ast) \text{ for each } x \in G \text{ and any } \{u_n(x)\}, \text{ there exists a } \{v_n(f(x))\} \text{ such that } f(u_n(x)) \subseteq v_n(f(x)). \]

Remark 1. \((\ast \ast) \) implies if \(x \in \lim x_n \) then \(f(x) \in \lim f(x_n) \).

Definition 2. \(r \)-homeomorphism, \(r \)-homeomorphic.

Let \(G \) and \(H \) be two \(R \)-spaces with same indicator \(\omega_0 \). A mapping \(f \) of \(G \) onto \(H \) is said to be \(r \)-homeomorphism if it satisfies next conditions:

1) \(f \) is a bijection.\(^5\)
2) \(f \) is (bi)-continuous.
3) For any \(\{u_n(x)\}, \{v_n(f(x))\} \) (such that \(v_n(f(x)) = f(u_n(x)) \)) is a fundamental sequence of neighborhoods with respect to \(f(x) \in H \).

If there is a homeomorphism between two \(R \)-spaces, then they are called homeomorphic with each other.

\(\S \) 2. The definition of \(SR \)-group and \(R \)-group.

Definition 3. (i) An \(R \)-space \(G \) that is also a group is called a \(SR \)-group (i.e. Semiranked group) if the operation \((x, y) \rightarrow xy \) is continuous as follows:

(a) Let \(x, y \) be \(\forall x, y \in G \). Then for any \(\{u_n(x)\}, \{v_n(y)\} \), there exists a \(\{w_n(xy)\} \) such that \(u_n(x)v_n(y) \subseteq w_n(xy) \).

1) [12].
2) [1], [2].
3) [8].
4) [2], II, p. 551.
(ii) An R-space G that is also a group is called an R-group (i.e. Ranked group) if the mapping $(x,y)\mapsto xy^{-1}$ is continuous as follows:

(b) Let x, y be $\forall x, y \in G$. Then for any $\{u_n(x), \{v_n(y)\}$, there exists a $\{w_n(xy^{-1})\}$ such that $u_n(x)v_n(y)^{-1} \subseteq w_n(xy^{-1})$.

Remark 2. (a) implies that, if $x \in \{\lim n x_n\}$ and $y \in \{\lim n y_n\}$, then $xy \in \{\lim n x_ny_n\}$. (b) implies that, if $x \in \{\lim n x_n\}$, $y \in \{\lim n y_n\}$, then $xy^{-1} \in \{\lim n x_ny_n^{-1}\}$.

Evidently, we get following proposition:

Proposition 1. Every R-group is a SR-group. But the converse is not true.

Theorem 1. Let a be a fixed element of a SR-group G. Then the mappings

\[r_a : x \mapsto xa, \quad l_a : x \mapsto ax \]

of G onto G are homeomorphisms of G.

Proof. It is clear that r_a is a one-to-one and onto mapping. Since G is a SR-group, for any $\{u_n(x), \{v_n(a)\}$ there exists a $\{w_n(xa)\}$ such that $u_n(x)v_n(a) \subseteq w_n(xa)$. Moreover $r_a(u_n(x)a) = u_n(x)a \subseteq u_n(x)v_n(a) \subseteq w_n(xa)$. Hence, r_a is continuous. By the same argument, $r_a^{-1} : x \mapsto xa^{-1}$ is continuous.

Furthermore, $\{r_a(u_n(x))\}$ is a fundamental sequence of neighborhoods with respect to $xa \in G$. Therefore, r_a is a homeomorphism. The fact that l_a is a homeomorphism follows similarly. (Q.E.D.)

Definition 4. Translation. r_a and l_a are, respectively, called the right and left translation of G.

Corollary 1. Let O be an r-open, F an r-closed, and A any subset of a SR-group G and let $a \in G$.

Then:

(i) Oa, aO, AO and OA are r-open.

(ii) Fa, aF are r-closed.

Proof. Since the mappings in Theorem 1 are homeomorphisms, (i) is obvious. By the same argument, Fa and aF are r-closed in (ii).

Since $AO = \bigcup_{a \in A} aO$, $OA = \bigcup_{a \in A} Oa$, and the union of r-open sets is r-open. (Q.E.D.)

Therefore,

Remark 4. r_a and l_a can be considered r-open and r-closed mappings.

Corollary 2. Let G be a SR-group. For $\forall x_1, x_2 \in G$, there exists a homeomorphism of G such that $f(x_1) = x_2$.

Namely, G is homogeneous.30

Proof. Let $x_1^{-1}x_2 = a \in G$, and consider the mapping $f : x \mapsto xa$. (Q.E.D.)

Theorem 2. If SR-group G satisfying F. Hausdorff's axiom $(O)^{30}$ is complete,11 then G is of the second Category.

§ 3. The neighborhoods of identity of a SR-group.

Let G be a SR-group, and e be its identity. e_n will denote the family of neighborhoods of e with rank n, and $\{U_n\}$, $\{V_n\}$, ... fundamental sequences of neighborhoods with respect to e.

The system $\{e_n\}$ possesses the following properties:

(A) for every V in e, $e \in V$ (where $e = \bigcup_{n=0}^{\infty} e_n$)

(B) for any U, V in e, there is a W in e such that $W \subseteq U \cap V$.

(a) for any V in e and for any integer n, there is a $m, m \geq n$, and a U in e_m such that $U \subseteq V$.

6) [5].

7) [7], II, p. 788.

9) [14], p. 28.

10) F. Hausdorff: Grundzüge der Mengenlehre, 1914, p. 213.

11) [11], I, pp. 554-555.
(β) \(G \in \varepsilon_e \).

These are obvious as the properties of neighborhoods in an \(R \)-space. This \(\{ \varepsilon_e \} \) has been introduced in [5]. We shall call this system \(\{ \varepsilon_e \} \) a fundamental system of neighborhoods of \(e \).

Furthermore, from (α), we get following properties:

\((SR_1)\) For any \(\{ U_n \} \), \(\{ V_n \} \), there exists a \(\{ W_n \} \) such that \(U_n V_n \subseteq W_n \).

\((SR_2)\) For any \(\{ U_n \} \) and for any \(x \in G \), there exists a \(\{ V_n \} \) such that \(x U_n x^{-1} \subseteq V_n \).

\((SR_3) (resp. (SR_4))\) Let \(x \) be any point of \(G \). For any \(\{ U_n \} \) there exists a \(\{ v_n(x) \} \) such that \(x U_n \subseteq v_n(x) \) (resp. \(U_n x \subseteq v_n(x) \)), and, conversely, for any \(\{ u_n(x) \} \), there exists a \(\{ V_n \} \) such that \(u_n(x) \subseteq x V_n \) (resp. \(u_n(x) \subseteq V_n x \)).

Proof. \((SR_1)\) is immediate consequences of (α), putting \(x = y = e \). We shall prove \((SR_3)\). Let \(\{ u_n(x) \} \) be some fundamental sequence of neighborhoods with respect to \(x \). Because of (α), there is a \(\{ v_n(x) \} \) such that \(u_n(x) U_n \subseteq v_n(x) \).

Since \(x \in u_n(x) \), \(x U_n \subseteq v_n(x) \). Conversely, taking some fundamental sequence of neighborhoods with respect to \(x^{-1} \), say \(\{ v_n(x^{-1}) \} \), and applying (α), there exists a \(\{ V_n \} \) such that \(v_n(x^{-1}) U_n(x) \subseteq V_n \). Since \(x^{-1} \in v_n(x^{-1}) \), \(x^{-1} U_n(x) \subseteq V_n \), i.e., \(u_n(x) \subseteq x V_n \). Similarly we can prove \((SR_3)\).

Next, we shall prove \((SR_2)\). For any \(\{ U_n \} \) and for any \(x \in G \), because of \((SR_3)\), we get a \(\{ v_n(x) \} \) such that \(x U_n \subseteq v_n(x) \).

Then, from \((SR_4)\), there exists a \(\{ V_n \} \) such that \(v_n(x) \subseteq V_n x \). Hence, \(x U_n x^{-1} \subseteq V_n \).

Remark 5. \((α)\) follows from \((SR_1)\), \((SR_2)\), \((SR_3)\), (or \((SR_4)\)). Therefore the three conditions above are not only necessary, but sufficient for a group \(G \) which is also an \(R \)-space to be a \(SR \)-group.

Proof. The proof is similar in [5]:

Take any \(\{ u_n(x) \} \), \(\{ v_n(y) \} \). From \((SR_3)\) and \((SR_4)\), there are \(\{ U_n \} \), \(\{ V_n \} \) such that \(u_n(x) \subseteq x U_n \), \(v_n(y) \subseteq V_n y \). Applying \((SR_1)\), we get \(\{ W_n \} \) such that \(U_n V_n \subseteq W_n \) and moreover, by \((SR_2)\), a \(\{ W_n \} \) such that \(x W_n x^{-1} \subseteq W_n \). From \((SR_3)\) again, there is a \(\{ w_n(x) y \} \) such that \(W_n x y w_n(x) y \subseteq w_n(x) y \). Then, \(u_n(x) v_n(y) \subseteq x U_n V_n y \subseteq x W_n x y w_n(x) y \subseteq w_n(x) y \).

Now, let \(G \) be a \(SR \)-group, where defined families of subsets, \(\varepsilon_n \ (n=0, 1, 2, \cdots) \), which satisfy axioms (A), (B), (α), (β), \((SR_1)\), \((SR_2)\), \((SR_3)\). When we take the totality of \(x V \) for \(V \in \varepsilon_n \) as \(\varepsilon_n(x) \), \((SR_3)\) is obviously fulfilled, and \(G \) becomes a \(SR \)-group. Taking \(\{ V_n \} : V \in \varepsilon_n \) as \(\varepsilon_n(x) \), we may obtain another \(SR \)-group. In any case convergence of sequences coincides.

§ 4. Sufficient conditions for \((SR_1)\), \((SR_2)\).

As sufficient conditions for \((SR_1)\), \((SR_2)\), respectively, we have

\((1)\) there exists a non-negative function \(\phi(\lambda, \mu) \) defined for \(\lambda > 0, \mu > 0 \) such that \(\lim_{\lambda, \mu \to \infty} \phi(\lambda, \mu) = \infty \), and the following hold; if \(U \in \varepsilon_l, V \in \varepsilon_m, W \in \varepsilon_n \) and \(UV \subseteq W \), then there exists a \(n^* \) such that \(UV \subseteq W^* \subseteq W \).

\((2)\) there exists a function \(\phi(\lambda; x) \geq 0 \) defined for \(\lambda > 0, \ x \in G \) such that \(\lim_{\lambda \to \infty} \phi(\lambda; x) \) for any fixed \(x \), and the following holds; if \(U \in \varepsilon_n, V \in \varepsilon_m, x \in G \), and \(x U x^{-1} \subseteq V \), there exists a \(n^* \) such that \(x U x^{-1} \subseteq V^* \subseteq V \).

The proof is similar in [5].

When \(\{ \varepsilon_n \} \) satisfies the condition:

\((***): \) if \(U \in \varepsilon_l, V \in \varepsilon_m \), then \(U \cap V \in \varepsilon_n \), where \(n > \max(l, m) \).

\((1)\), \((2)\) may be replaced by, respectively,

\((1')\) there exists a function \(\phi(\lambda, \mu) \) such as \(\phi \) in \((1)\), and the following hold; for any \(U \in \varepsilon_l, V \in \varepsilon_m \), there exists a \(n^* \) such that \(UV \subseteq W \).

\((2')\) there exists a function \(\phi(\lambda; x) \) such as \(\phi \) in \((2)\), and the following holds; for any \(U \in \varepsilon_n \), and for any \(x \in G \), there exists a \(n^* \) such that \(x U x^{-1} \subseteq V \).
§5. Subgroup, Normal subgroup, Quotient group.

In this section we will define several new notions, i.e. SR-subgroup, R-subgroup, SR-normal subgroup, R-normal subgroup, SR-quotient group, and R-quotient group.

Definition 5. **SR-subgroup, R-subgroup.**

(i) Let \(G \) be a SR-group and \(H \) a subgroup of \(G \). Then \(H \), endowed with the rank induced\(^{12}\) from \(G \), is called a **SR-subgroup**.

(ii) Let \(G \) be an R-group and \(H \) a subgroup of \(G \). Then \(H \), endowed with the rank induced from \(G \), is called an **R-subgroup**.

Definition 6. **SR-normal subgroup, R-normal subgroup.**

(i) If \(G \) is a SR-group and if \(N \) is a normal subgroup of \(G \), then \(N \) is called a **SR-normal subgroup**.

(ii) If \(G \) is an R-group and if \(N \) is a normal subgroup of \(G \), then \(N \) is called an **R-normal subgroup**.

Proposition 2. Every \(r \)-open subgroup \(H \) of a SR-group (hence of a R-group) \(G \) is \(r \)-closed.

Proof. For each \(x \in G \), \(xH \) is \(r \)-open by Corollary 1.

Hence, \(H = G - \bigcup xH \) is \(r \)-closed, because \(\bigcup xH \) is \(r \)-open, where the union is taken over all pairwise disjoint cosets different from \(H \).

(Q.E.D.)

Proposition 3. Let \(U \) be a symmetric\(^{13}\) neighborhood of \(e \) in an R-group \(G \). Then \(H = \bigcup_{n \geq 1} U^n \) is an \(r \)-open and \(r \)-closed subgroup of \(G \).

Proof. Let \(x, y \in H \). Then there exist positive integers \(m, n \) such that \(x \in U^m, y \in U^n \). Hence, \(x = y^{-1} \in U^m (U^*)^{-1} = U^n (U^-)^n = U^n U^n = U^{m+n} \notin H \). Thus, \(H \) is a subgroup of \(G \). Now to show that \(H \) is \(r \)-open, we observe that for each \(y \in H \), \(y \notin U \) where \(U \) is \(r \)-open.

This proves that \(H \) is \(r \)-open and \(r \)-closed by Proposition 2.

(Q.E.D.)

Proposition 4. If \(H \) is an \(r \)-closed R-subgroup of an R-group \(G \), then \(H \) is \(r \)-closed R-normal subgroup of \(G \), so is \(\overline{H} \).

Proof. By using \(\overline{H} = H \), we get this Proposition.

Let \(G \) be a SR-group and \(H \) a subgroup of \(G \). Let \(G/H \) denote the collection of all distinct cosets \(\{xH\}, x \in G \). Let \(f \) be the canonical mapping of \(G \) into \(G/H \) (i.e. \(f: x \mapsto xH \)). Then, for any fundamental sequence of neighborhoods of \(x \in G \), we can consider \(\{f(u_n(x))\} \) a fundamental sequence of neighborhoods with respect to \(\{x \in G|H (x \equiv xH) \} \), thus, we put \(f(u_n(x)) \equiv \tilde{u}_n(x) \). Therefore, \(G/H \) is an R-space (endowed with the rank induced from \(G \)).

Thus, Definition 7. **SR-quotient space, R-quotient space.**

(i) Let \(G \) be a SR-group and \(H \) a subgroup of \(G \). Then \(G/H \), the collection of all distinct cosets \(\{xH\}, x \in G \), is called a **SR-quotient space**.

(ii) If \(G \) is an R-group and if \(H \) is a subgroup of \(G \), then \(G/H \) is called an **R-quotient space**.

Remark 6. \(f \) is an onto and \(r \)-continuous mapping.

Proposition 5. Let \(G \) be a SR-group and \(H \) a subgroup of \(G \), then \(G/H \) is a homogeneous space.

Proof. Let \(x_1, x_2 \in G/H \), then \(x_1 = x_2H \) and \(x_2 = x_2H \). Let \(a \) be in \(G \) such that \(ax_1 = x_2 \). Define the mapping \(f_a: x \mapsto xH \mapsto (axH) = ax \) for \(\forall x \in G/H \). Then \(f_a \) is well-defined and is one-to-one mapping of \(G/H \) onto itself. Also \(f_a^{-1}: x \mapsto (a^{-1}x)H \). Obviously, \(f_a \) is bicontinuous. This \(f_a \) is a homomorphism as is easy to check. Clearly, \(f_a(\tilde{x}_1) = ax_1(ax_1)H = x_1H = x_2 \) shows that \(G/H \) is a homogeneous space.

(Q.E.D.)

Proposition 6. Let \(H \) be a subgroup of a SR-group \(G \), and \(f \) the canonical mapping of \(G \) onto \(G/H \). If \(\{\tilde{e}\} \) is a fundamental system of neighborhoods of \(e \in G \), then \(\{f(\tilde{e})\} \) is a fundamental system of neighborhoods of \(\tilde{e} \in G/H \).

Proof. For each \(e_n, f(\tilde{e}) \) is regarded as a neighborhood of \(\tilde{e} \).

\(^{13}\) A subset \(U \) of a group \(G \) is said to be symmetric if \(U = U^{-1} \).

\(^{14}\) [7], III, pp. 792–793.
Proposition 7. Let G be a SR-group (or R-group) and N a normal subgroup of G. Then
1) The canonical mapping $f : G \rightarrow G/N$ is an r-continuous and homomorphism.
2) G/N is a SR-group (or R-group).

Proof. These are obvious.

Definition 8. SR-quotient group, R-quotient group.

Let G be a SR-group (or R-group) and N a normal subgroup of G, then the group G/N is called a
SR-quotient group (or R-quotient group).

Proposition 8. Let G be an R-group, N a normal subgroup of G, M any R-subgroup of G, and $f : G \rightarrow G/N$. Then $f(M)$ is an R-subgroup of G/N, and it is homeomorphic with MN/N.

Proof. By an isomorphism theorem of abstract groups.

Proposition 9. (The first law of isomorphism). Let N be a normal subgroup of an R-group G and M any R-subgroup of G. Let $f(m) = m(M \cap N)$, $m \in M$. Then, f endows the rank of MN/N onto $M/M \cap N$.

Proof. By the above arguments.

Moreover,

Proposition 10. (The second law of isomorphism). Let G be an R-group, N and M two normal subgroups of G such that $N \subseteq M$. Then, G/M is homeomorphic with $(G/N)/(M/N)$.

Finally, the author thanks to Prof. Kömei Suzuki, Hidetake Nagashima, Tomisaburô Taniguchi, and Heishirô Hayasaka deeply.

(To be continued)

References

***) Tokyô University of Sciences.

****) Hokkaido University of Education.

*****) Tomakomai Technical College.

(Received on January 15, 1970)