Some considerations in the Ranked Spaces

By

Toshitada SHINTANI*

Tomakomai Technical College
(Received on January 5, 1971)

Synopsis

The purpose of this paper is to study some properties of sets of points in the ranked spaces.

We shall use the same terminology that is introduced in [1] and [2]. And throughout this paper we shall always treat ranked spaces with general indicator \(\omega \).

1. Derived sets, Adherences.

Definition 1. Let \(R \) be a ranked space and let \(E \) any subset of \(R \). A point \(p \) in \(R \) is called an accumulation point\(^1\) of \(E \) if there exists a fundamental sequence \(\{ V_\alpha(p) ; 0 \leq \alpha < \omega \} \) of \(p \) in \(R \) such that

\[
V_\alpha(p) \cap (E - p) \neq \emptyset \quad \text{for all} \quad 0 \leq \alpha < \omega.
\]

The set of all accumulation points of \(E \) is called the derived set of \(E \). We denote this by \(E^d \). \(E^n = \{ p \mid p \in \{ \lim p_\alpha \} \} \) is called the adherence of \(E \) and each point of \(E^n \) is called an adherent point of \(E \).

Proposition 1. \(E \subseteq E^n \). \(E \subseteq F \Rightarrow E^n \subseteq F^n \), \(\phi^n = \phi \), \(R^n = R \), \(E^n \subseteq E^{*n} \).

Proposition 2. \(p \in E^d \Leftrightarrow p \in (E - p)^n \).

Proof. If \(p \) is a point of \(E^d \) then there is a fundamental sequence \(\{ V_\alpha(p) ; 0 \leq \alpha < \omega \} \) of \(p \) in \(R \) such that \(V_\alpha(p) \cap (E - p) \neq \emptyset \) for all \(0 \leq \alpha < \omega \). Thus there is a sequence \(\{ p_\alpha ; 0 \leq \alpha < \omega \} \) such that

\[
p_\alpha \in V_\alpha(p) \cap (E - p) \quad \text{for all} \quad 0 \leq \alpha < \omega.
\]

Thus we have \(p \in \{ \lim \} p_\alpha \} \subseteq \{ p \in E - p ; 0 \leq \alpha < \omega \} \). Therefore we have \(p \in (E - p)^n \). Conversely, if \(p \in (E - p)^n \) then there is a sequence \(\{ p_\alpha ; 0 \leq \alpha < \omega \} \) such that

\[
p \in \{ \lim \} p_\alpha \} \subseteq \{ p \in E - p ; 0 \leq \alpha < \omega \} \subseteq \{ p \in (E - p)^n \}.
\]

Thus there is a fundamental sequence \(\{ V_\alpha(p) ; 0 \leq \alpha < \omega \} \) of \(p \) such that

\[
V_\alpha(p) \cap (E - p) \neq \emptyset \quad \text{for all} \quad 0 \leq \alpha < \omega.
\]

Hence we have \(V_\alpha(p) \cap (E - p) \neq \emptyset \) for all \(0 \leq \alpha < \omega \). This shows \(p \in E^d \).

Proposition 3. \(E^d = E \cup E^d \), \((E \cup F)^n \subseteq E^n \cup F^n \), \((E \cup F)^n = E^n \cup F^n \).

Proof. From \(p \in E^d \cup p \in (E - p)^n \subseteq E^n \) we get \(E^d \subseteq E^n \). Hence \(E \cup E^d \subseteq E^n \). Conversely, let \(p \) be an element of \(E^n \). In the case of \(p \in E \) we get \(E^n \subseteq E \subseteq E \cup E^d \). In the case of \(p \in E^d \) then we have \(E^n \subseteq E \cup E^d \) \(\Longleftrightarrow \) \(p \in E^n \). This is a contradiction. Hence we have \(p \in E^d \). Thus we have

\[
E^d = E \cup E^d.
\]

Proposition 4. For any subset \(E \) of the ranked space \(R \), the following two conditions are equivalent:

1) \(p \in E^n \).

2) There is a fundamental sequence \(\{ V_\alpha(p) ; 0 \leq \alpha < \omega \} \) of \(p \) in \(R \) such that \(V_\alpha(p) \cap E \neq \emptyset \) for all \(\alpha \), \(0 \leq \alpha < \omega \).

Proof. Let \(p \) be a point of \(E^n \). Then we have \(p \in E \) or \(p \in E^d \). And there is a fundamental sequence \(\{ V_\alpha(p) ; 0 \leq \alpha < \omega \} \) of \(p \) in \(R \). In this time, if \(p \in E \) then \(V_\alpha(p) \cap E \neq \emptyset \) for all \(\alpha \), \(0 \leq \alpha < \omega \), and if \(p \in E^d \) then \(V_\alpha(p) \cap E \neq \emptyset \) \(\Longleftrightarrow \) \(V_\alpha(p) \cap (E - p) \neq \emptyset \) for all \(\alpha \), \(0 \leq \alpha < \omega \). Hence if \(p \in E^n \) there is a fundamental sequence

\[
\text{[Footnote]}\quad [4], \text{II, p. 788.}
\]

* 数学：講師，一般教科.

\(\{ V_n(p); 0 \leq \alpha < \omega \} \) of \(p \) in \(R \) such that \(V_n(p) \cap E = \emptyset \) for all \(\alpha, 0 \leq \alpha < \omega \). Conversely, suppose that there is a fundamental sequence \(\{ V_n(p); 0 \leq \alpha < \omega \} \) of a point \(p \) in \(R \) such that \(V_n(p) \cap E = \emptyset \) for all \(\alpha, 0 \leq \alpha < \omega \). Then if \(p \in E \) we have \(p \in E^2 \) and if \(p \notin E \), since \(E - p = E \), we have \(V_n(p) \cap (E - p) = V_n(p) \cap E = \emptyset \) for all \(\alpha, 0 \leq \alpha < \omega \). Thus we get \(p \in E^2 \subseteq E^2 \), i.e., \(p \in E^2 \).

Since \(\phi \equiv \phi^* \) & \(E \subseteq F \Rightarrow E^2 \subseteq F^2 \), \(p \in E^2 \Rightarrow p \in (E - p)^2 \) are true, we have the following statement:

Proposition 5. The ranked space \(R \) becomes a space \((V)\) in the sense of M. Fréchet.2)

2. Open sets, Closed sets.

Definition 2. Let \(E^e \equiv R - E \) be the complementary set of a subset \(E \) of the ranked space \(R \). Then \(E^e \equiv R - (E^e)^e \), each point of \(E^e \), \(E^e \equiv (E^e)^e \), each point of \(E^e \), \(E^e \equiv R - (E^e^e \cup E^e^e) \) and each point of \(E^e \) are respectively called the **interior** of \(E \), an **inner point** of \(E \), the **exterior** of \(E \), an **outer point** of \(E \), the **frontier** of \(E \) and a **boundary point** of \(E \).

From these definitions we have the following statement:

Proposition 6. \(E \subseteq E \subseteq E^e \), \(\phi^* = \phi \), \(E^e \subseteq E \), \(E^e = E - E^e \), \(E^e = E^e \), \(E^e = E^e \), \(E^e = E^e \), \(R^e = E^e \cup E^e \), \(E^e = E^e \), \(E^e = E^e \) (direct sum) = \(E^e \cup E^e \) (direct sum) = \(E^e \cup E^e \). Therefore \(E \) is open in \(R \).

Definition 3. Let \(E \) be a subset of the ranked space \(R \). If \(E \subseteq E \), i.e., \(E^e = E \) then \(E \) is called a **closed set** in \(R \). And if \(E^e \) is a closed set in \(R \) then \(E \) is called an **open set** in \(R \). (These definitions coincide with the definitions in the Note [3].)

Proposition 7. A subset \(E \) of the ranked space \(R \) is an open set in \(R \) iff \(E^e = E \).

Proof. If \(E \) is open in \(R \) then \(E^e = E \). From \(E^e = E - E^e \) we get \(E = E^e \). Conversely, if \(E^e = E \) then \(E \cap (E^e)^d = E \cap (E^e)^d = (E - (E^e)^d) \cap (E^e)^d = \emptyset \). Hence we have \((E^e)^d \subseteq E^e \). Thus we get \(E^e = E^e \cup (E^e)^d = E^e \). Therefore \(E \) is open in \(R \).

Proposition 8. For any subset \(E \) of the ranked space \(R \), the following two conditions are equivalent:

1. \(p \in E^e \),
2. For any fundamental sequence \(\{ V_n(p); 0 \leq \alpha < \omega \} \) (\(F. \ S. \) in \(R \)) of \(p \in E \), there is an \(\alpha', 0 \leq \alpha' < \omega \), such that \(E \supseteq V_{\alpha'}(p) \).

Proof. If \(p \in E^e \) then we have \(p \subseteq E - (E^e)^d \), i.e., \(p \notin E \) & \(p \subseteq (E^e)^d \). Thus, for any fundamental sequence \(\{ V_n(p); 0 \leq \alpha < \omega \} \) of \(p \in E \) there is an \(\alpha', 0 \leq \alpha' < \omega \), such that \(V_{\alpha'}(p) \cap (E^e - p) = \emptyset \). From \(E - p = E \) we have \(V_{\alpha'}(p) \cap E = \emptyset \). Hence, we have \(E \supseteq V_{\alpha'}(p) \). Conversely, if, for any fundamental sequence \(\{ V_n(p); 0 \leq \alpha < \omega \} \) of \(p \in E \), there is an \(\alpha', 0 \leq \alpha' < \omega \), such that \(E \supseteq V_{\alpha'}(p) \) then we have \(p \subseteq E \) & \(p \subseteq (E^e)^d \). Thus we have \(V_{\alpha'}(p) \cap (E^e - p) = \emptyset \), i.e., \(p \subseteq (E^e)^d \). Hence we have \(p \subseteq E - (E^e)^d = E^e \).

Corollary 1. \(E \subseteq F \Rightarrow E^2 \subseteq F^2 \).

Corollary 2. A subset \(E \) of the ranked space \(R \) is open in \(R \) iff, for \(\forall \ p \in E \) and for \(\forall \{ V_n(p); 0 \leq \alpha < \omega \} \) (\(F. \ S. \) of \(p \in R \)), there is an \(\alpha', 0 \leq \alpha' < \omega \), such that \(E \supseteq V_{\alpha'}(p) \). Therefore, our notion of open sets coincides with the notion of open sets in the sense of the Note [4].

In fact, if \(E \) is open in \(R \) we get \(E \) by Proposition 8. Conversely, if, for \(\forall p \in E \) and for \(\forall \{ V_n(p); 0 \leq \alpha < \omega \} \) (\(F. \ S. \) of \(p \in R \)), there is an \(\alpha', 0 \leq \alpha' < \omega \), such that \(E \supseteq V_{\alpha'}(p) \) then we have \(p \in E^e \), i.e., \(E \subseteq E^e \). Thus we have \(E = E^e \).

From Corollary 2 we have the followings:

Proposition 9. If both \(E \) and \(F \) are open (resp. closed) in the ranked space \(R \), then \(E \cup F \) (resp. \(E \cap F \)) is open (resp. closed) in \(R \), but \(E \cap F \) (resp. \(E \cup F \)) is not always open (resp. closed) in \(R \).

In fact, let \(E \) and \(F \) be two closed sets in \(R \). From \((E \cap F)^e = (E \cap F)^e \) & \((E \cup F)^e = (E \cup F)^e = E \cap F \) it follows that \(E \cap F \) is closed in \(R \).

Corollary. Any union (resp. intersection) of open sets (resp. closed sets) in \(R \) is open (resp. closed in \(R \)).

3. Continuous mappings.

Prof. K. Kunugi introduced the notion of ortho-continuity in the Note [2]. We introduced another notion of continuity ([7]).

Definition 4. Let R, S be two ranked spaces with same indicator ω. Then we will say that the mapping $f: R \rightarrow S$ is R-continuous at the point p in R if the following condition is fulfilled:

For any fundamental sequence $\{V_a(p); 0 \leq \alpha < \omega\}$ of any point p in R, there is a fundamental sequence $\{U_a(q); 0 \leq \alpha < \omega\}$ of the point $q = f(p)$ in S such that $f(V_a(p)) \subseteq U_a(q)$ for all $\alpha, 0 \leq \alpha < \omega$.

The mapping f is said to be R-continuous if it is R-continuous at each point of R.

From the definition of R-continuity we get the following statement:

Proposition 10. Every R-continuous mapping is ortho-continuous, but the converse is not always true.

Proposition 11. Let R, S be two ranked spaces with same indicator and let $f: R \rightarrow S$ a mapping of R into S. Then the following three conditions are equivalent.

1. f is R-continuous at a point p in R.
2. Let E be a subset of R and let $p \in E^a$, then we have $f(p) \in f(E)^a$, i.e., $f(E^a) \subseteq f(E)^a$.
3. Let F be a subset of S and let $p \in f^{-1}(F)^a$, then we have $f(p) \in F^a$.

Proof. (1)\Rightarrow(2); Let f be an R-continuous mapping at the point p, then for any fundamental sequence $\{V_a(p); 0 \leq \alpha < \omega\}$ of p in R there is a fundamental sequence $\{U_a(f(p)); 0 \leq \alpha < \omega\}$ of $f(p)$ in S such that $f(V_a(p)) \subseteq U_a(f(p))$, $\forall \alpha, 0 \leq \alpha < \omega$.

Since p is belonging to E^a there is a fundamental sequence $\{V_a(p); 0 \leq \alpha < \omega\}$ of p in R such that $V_a(p) \cap E^a \neq \emptyset$, $\forall \alpha, 0 \leq \alpha < \omega$. Thus, we have $f(V_a(p)) \cap f(E)^a \neq \emptyset$, $\forall \alpha, 0 \leq \alpha < \omega$. Therefore, we get $f(V_a(p)) \subseteq U_a(f(p))$, $\forall \alpha, 0 \leq \alpha < \omega$, i.e., $f(p) \in f(E)^a$.

(2)\Rightarrow(1); Now we suppose that the mapping f is not R-continuous at the point p in R. Then, for any fundamental sequence $\{U_a(f(p)); 0 \leq \alpha < \omega\}$ of $f(p)$ in S there is an α', $0 \leq \alpha' < \omega$, such that $f(V_{alpha}(p)) \nsubseteq U_{alpha}(f(p))$. Thus, we have the following fact:

$$p_{\alpha'} \in V_{\alpha'}(p) \& f(p_{\alpha'}) \notin U_{\alpha'}(f(p)).$$

Let E be the set of all points p satisfying the above condition. Then we have $p \in E^a$ and $f(E) \cap U_a(f(p)) \neq \emptyset$, i.e., $f(p) \notin f(E)^a$. Therefore, if $f(p) \in f(E)^a$ then f is R-continuous at the point p in R.

(2)\Leftrightarrow(3); Put $E = f^{-1}(F)$. From $f(E) = f^{-1}(F)$, using the condition (2), it follows that $p \in E^a = f^{-1}(F)^a \subseteq f(E)^a$.

(3)\Leftrightarrow(2); Put $F = f(E)$ for the set E such that $p \in E^a$. From $E \subseteq f^{-1}(F)^a = f^{-1}(F)$ it follows that $E^a \subseteq f^{-1}(F)^a$. Thus, we have $p \in f^{-1}(F)^a$. Therefore, by the condition (3), we have $f(p) \in F^a = f(E)^a$.

Proposition 12. Let R, S and T be three ranked spaces with same indicator and let $R \rightarrow S \rightarrow T$. If f is R-continuous at the point $p \in R$ and if g is R-continuous at the point $q = f(p) \in S$ then the composed mapping $g \circ f$ is R-continuous at the point p in R.

In fact, we have the following fact:

$$g(f(U_a(p))) \subseteq g(U_a(f(p))) \subseteq W_a(g(f(p))) (\forall \alpha, 0 \leq \alpha < \omega).$$

Let \mathcal{G} be the set of all ranked spaces with same indicator ω and let $M \left(R, S \right)$ be the set of all R-continuous mappings of $R \left(\in \mathcal{G} \right)$ into $S \left(\in \mathcal{G} \right)$. Furthermore, we shall denote by the form $V_a(p) \rightarrow V_{alpha}(p)$ the fact that for any fundamental sequence $\{V_a(p); 0 \leq \alpha < \omega\}$ of p in $R \in \mathcal{G}$ there exists a fundamental sequence $\{V_{alpha}(p'); 0 \leq \alpha < \omega\}$ of $p' = f(p)$ in $R' \in \mathcal{G}$.

Now we have the following three statements.
(i) For \(\forall f \in M(R, S), \forall g \in M(S, T) \) and \(\forall h \in M(T, U) \), \(h \cdot (g \cdot f) = (h \cdot g) \cdot f \) is satisfied.
(ii) For each \(R \in \mathcal{C} \), there exists the identity morphism \(1_R \in M(R, R) \) and \(f \cdot 1_R = f \) is satisfied for \(\forall f \in M(R, S) \)

and

(iii) \(1_R \cdot g = g \) is satisfied for \(\forall g \in M(S, R) \).

In fact, from the form \(V \xrightarrow{f} V' \xrightarrow{g} V'' \xrightarrow{h} V''' \) it follows that the form \(V \xrightarrow{h \cdot (g \cdot f)} V''' \). On the other hand, we have the form \(V \xrightarrow{f} V' \xrightarrow{h^{-1} \cdot g} V'' \). Therefore \(h \cdot (g \cdot f) = (h \cdot g) \cdot f \) is true. Moreover the conditions (ii) and (iii) are clearly true. Therefore we get following statement:

Proposition 13. We have the category \(\mathcal{C} \) of ranked spaces. Objects, all ranked spaces with same indicator \(\omega \); morphisms, all \(R \)-continuous mappings \(f : R \rightarrow S \) of one space \(R \in \mathcal{C} \) into a second one \(S \in \mathcal{C} \).

4. Homeomorphisms.

Let \(R, S \) be two ranked spaces with same indicator and let \(f : R \rightarrow S \) be a one-to-one \(R \)-continuous mapping of \(R \) onto \(S \).

Proposition 14. Let \(E \) be a subset of the ranked space \(R \). If \(p \in (E - p)^a \) then we have \(f(p) \in (f(E) - f(p))^a \).

Proof. Since \(f \) is one-to-one we have \(f(E - p) = f(E) - f(p) \). And since \(f(p) \) is \(R \)-continuous, if \(p \in (E - p)^a \) then we have \(f(p) \in (E - p)^a \). On the other hand we have \(f(E - p)^a = (f(E) - f(p))^a \). Thus we have \(f(p) \in (f(E) - f(p))^a \).

Definition 5. If \(f : R \rightarrow S \) is bijective and \(R \)-continuous then it is called the **homeomorphism**. If \(f \) is a homeomorphism then its inverse mapping \(f^{-1} \) is also a homeomorphism.

Proposition 15. Let \(f : R \rightarrow S \) be a homeomorphism and \(E \) a subset of \(R \). Then we have the following statement:

\[p \in (E - p)^a \iff f(p) \in (f(E) - f(p))^a. \]

Proof. Put \(q = f(p) \). And let \(F \) be a subset of \(S \). Since \(f^{-1}(q) \) becomes a homeomorphism we have the following fact:

\[q \in (F - q)^a \iff f^{-1}(q) \in (f^{-1}(F) - f^{-1}(q))^a. \]

Now put \(f^{-1}(F) = E \). Then we have the following statement:

\[f(p) \in (f(E) - f(p))^a \iff p \in (E - p)^a. \]

Proposition 16. Let \(f : R \rightarrow S \) be a bijection. Then the following three conditions are equivalent:

1. \(f \) is a homeomorphism.
2. \(f(E^a) = f(E)^a \) is satisfied for any subset \(E \) of \(R \).
3. \(f^{-1}(F)^a = f^{-1}(F)^a \) is satisfied for any subset \(F \) of \(S \).

Proof. (1) \(\Rightarrow \) (2); By Proposition 15 we get \(p \in (E - p)^a \iff f(p) \in f(E - p)^a \). Hereupon replace \(E - p \) by \(E \). Then we get \(f(E^a) = f(E)^a \).

(2) \(\Rightarrow \) (1): Since \(f(E^a) \subseteq f(E)^a \) is satisfied for any subset \(E \) of \(R \), \(f \) is \(R \)-continuous on \(R \) and \(f^{-1}(f(E)^a) \subseteq E^a \) is satisfied for any subset \(E \) of \(R \). Put \(F = E \). Then we have \(E = f^{-1}(F) \). Thus, we have \(f^{-1}(F)^a \subseteq f^{-1}(F)^a \). Therefore, \(f^{-1} \) is \(R \)-continuous on \(S \).

(2) \(\Rightarrow \) (3); Put \(f^{-1}(F) = E \). Then we have \(F = f(E) \). From \(f(E^a) = f(E)^a \) we have \(f(f^{-1}(F)^a) = F^a \). Thus we have \(f^{-1}(F)^a = f^{-1}(F)^a \).

(3) \(\Rightarrow \) (2); This is clear.

Proposition 17. Let \(f : R \rightarrow S \) be a homeomorphism. Then we have \(f(E^a) = f(E)^a \) for any subset \(E \) of \(R \).
Some considerations in the Ranked Spaces

Proof. If we replace E by E^α in the equality $f(E^\alpha)=f(E)^\alpha$ then we have $f((E^\alpha)^\alpha)=f((E)^\alpha)^\alpha$. On the other hand we have $f((E)^\alpha)^\alpha=f((E)^\alpha)^\alpha$ & $f((E)^\alpha)^\alpha=f((E)^\alpha)^\alpha$. Hence we have $f(E)^\alpha=f(E)^\alpha$.

Let R, S be two ranked spaces with same indicator. Let E be a subset of R and F a subset of S. If there is a homeomorphism f such that $F=f(E)$ then the set F is said to be homeomorphic with the set E. This homeomorphic relation is denoted by $E\sim F$.

Proposition 18. $E\sim E$, $E\sim F \Rightarrow F \sim E$, $E\sim F$ & $F\sim G \Rightarrow E\sim G$.

5. Open mappings, closed mappings.

Definition 6. A mapping f on a ranked space with indicator ω to another ranked space with same indicator ω is open (resp. closed) iff the image of each open set (resp. closed set) is open (resp. closed).

Proposition 19. Let $f: R \rightarrow S$ be a bijection of the ranked space R to the ranked space S. Then the following conditions are coincide with each other.

(i) f is open. (2) f is closed.

Moreover we get the following propositions.

Proposition 20. Let R, S, T be three ranked spaces with same indicator and let $R \xrightarrow{f} S \xrightarrow{g} T$. If both f and g are open (resp. closed) then the composed mapping $g \circ f$ is open (resp. closed).

Proposition 21. $f: R \rightarrow S$ is a homeomorphism iff f is a one-to-one R-continuous open (or closed) mapping.

Finally, I express my heartfelt thanks to Prof. K. Kunugi who is a member of the Japan Academy. I thanks also to Prof. S. Nakanishi who is a referee of the Mathematical Society of Japan and gave me many valuable suggestions on this paper.

References

