伊達地区キャベツ中の残留BHC, DDTの分析

森田修吾*
筿村泰昭**

Analysis of BHC and DDT in the Cabbages gathered from the Date area.

Syûgo MORITA
Yasuaki SASAMURA

要旨
昭和43年秋収穫の伊達地区キャベツを10について公定法に基づき残留農薬を分析した結果、DDTは検出されなかったが、γ-BHCは最高0.062 ppmで検出された。

Synopsis
The cabbages gathered from the Date area in 1968 contained 0 to 0.062 ppm γ-BHC, the other hand, DDT was not found.

1. まえがき

食品中の残留農薬について昭和43年3月4日食品5農薬1) 昭和45年11月14日食品9農薬の残留許容量が告示され、さらに昭和46年11月28日食品11農薬2) について厚生大臣の答申がなされている。昭和44年には有機溶液剤の原料の製造が中止され、販売、使用の規制も行われている。しかし過去30年間に散布された農薬はその回収が難しく、依然として土壌等に残存し、それは次々と、体内に農薬として入って来ているものと思われる。

本研究は公定法3)に基づき、国内に数多の農薬の栽培があなた伊達地区10件の農家のキャベツ（昭和43年秋収穫）中のBHC、およびDDTを分析した結果である。

2. 分析方法

2-1 取扱い
ペンゼン：残留農薬試験用、Florisil；Floridian Co.製100～200 meshを400℃で5時間加熱活性化し、デンゲーター中に保存、無水硫酸ナトリウム：試薬特級品、標準農薬試料：BHC（γ-BHC 26％、other-BHC 74％）、DDT、Aldrin、いずれもPolyscience社製1％ペンゼン溶液。

2-2 実験器具および装置
Kuderna-Danish捕留装置（2球スナイダーカラム付）、クロマト管（内径10mm、長さ200mm）、その他のガラス器具はすべてクロム酸洗液で洗浄後使用する。

ガスクロマトグラフ島津 GC-2 C型、E.C.D.-1 A型（トリクロム使用で充てん剤は5％シリコン DC-11、担体クロトロンソルブG（HMDS）60～80 meshを、カラムはガラス製が3mm、長さ1.8mのものを用いた。

2-3 試験溶液の調整
操作方法は、厚生省告示の“通案”の1)の通りであり、試験溶液に内部標準物質として0.2ppmアルドリン溶液5mlを添加しガスクロ注入口サンプルした。

2-4 検量線の作成
標準農薬試料をペンゼンにて希釈しガスクロマトグラムを求め(図-1)保持時間、ピークの形状より検出能にてother-BHC、γ-BHC、Aldrin、DDTと確認した。定量化はピークの面積よりγ-BHCはアルドリンとのピークの高さ。比較的堆積されているピークのDDTについてはピーク面積(半価幅法)の比をもって作成した。検出器の感度が頻繁に変わるので、測定ごとに検量線を書きなおす必要があった。
3 分析結果

実際のサンプルの分析に入るまえに、抽出行程における回収率1)について検討した。
すなわち、ビニールハウス内で農薬を使用しないキャベツを育成し（実際の分析でもBHC、DDTは検出されなかった）試料調整操作の細分均一化地点で既知量の標準農薬標準（検量線作成時と同一溶液）を添加し、添加した全量が検出された場合を回収率100％として操作のパラッキを調べた。同一添加量について2回ずつ行ったが表-1に示すように同一添加量でのパラッキは小さい。全体的に添加量が大きくなると回収率が悪くなる傾向にあるが以後のデータは主収率の補正をしていない。

次に昭和45年秋、伊達地区10ヶ所の農家より集めたキャベツについて分析した。DDTはいずも検出されずγ-BHCについて同一キャベツを3回分析した結果を表-2に示す。

<table>
<thead>
<tr>
<th>表-1 キャベツに添加したBHC, DDTの回収率</th>
</tr>
</thead>
<tbody>
<tr>
<td>添加γ-BHC（ppm）</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>0.122</td>
</tr>
<tr>
<td>0.030</td>
</tr>
<tr>
<td>0.012</td>
</tr>
<tr>
<td>0.006</td>
</tr>
<tr>
<td>Av.（%） 75</td>
</tr>
<tr>
<td>Range（%） 61〜84</td>
</tr>
<tr>
<td>Std. Dev. 7.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表-2 キャベツ中の残留γ-BHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>地区No.</td>
</tr>
<tr>
<td>gamma-BHC</td>
</tr>
<tr>
<td>検出値（ppm）</td>
</tr>
<tr>
<td>(ppm)</td>
</tr>
<tr>
<td>av.</td>
</tr>
</tbody>
</table>

*ガスクロマトグラムを図-2に示す。
△ピークが認められるがγ-BHC の検出限界 0.003 ppm に至らない。
× 検出されず。
なお other-BHC に相当するピークが認められたが、当初 BHC 異性体中殺虫効果を持っている \(\gamma \)-BHC のみに注目していたので定量しなかった。なお厚生省の告示によるキャベツ中の \(\gamma \)-BHC の残留許容量は 0.5 ppm であること、たが、\(\gamma \)-PHC 最高 0.062 ppm 検出された。この量は厚生省の許容量基準の 0.05 ppm よりもはるかに少ない。

4 す む す び

昭和43年秋収穫された伊達地区キャベツ10点について公定法に基づき E.C.D. 付ガスクロマトグラフィーにて残留農薬を分析した結果 DDT は検出されなかっ

文献
1）食品衛生研究 18, 614～617 ('68)
2）同 上 22, 112～113 ('72)
3）J. Burke et al. Journal of the A. O. A. C. 47 (2) 326～342 ('64)

(昭和48年 1月11日受理)