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Synopsis,

The purpose of the present paper is to explain systematically the outline of various
extensors according to the steps of their development, We do not refer to how these extensors
are useful in higher order spaces. Therefore, we must consult the reference papers, if we
would like to know aktout their uses.

§ 0. Introduction. The notion of an extensor which has played an important role in geometry of
higher order spaces of connections was first used by H. V. Craig { 1 ]. Prof. A. Kawaguchi [ 6] has
immediately extended it to multiple parameter extensor on #—dimensional space and formed the complete
system of extensor theory (6J. (73, (81, {91. Afterwards, H. V. Craig and W. T, Guy, Jr. [ 4
have introduced the Jacobian extensor which is one of tke generalizations of tle extensor, and studied
its properties, and H. V. Craig (5] has also extended it to multiple parameter case. On the other
hand, M. Kawagnchi ([10] has defined the generalized extensor, and arranged its theory [11], [121,
(13). In this case, it has several properties which are different from those of the ordinary extensor,
Notation. 1) Following H. V. Craig [ 17, 727, 733, we shall use the one root letter x for all
coordinate systems,

2) We shall distinguish between different coordinate systems by means of the letters employed
indices, 7, 7 ; a, f.

3) Furthermore, we shall introduce the following notations:

X 0= yi \f’i—rl’—ii&, "y 2 = d2x’
dt dr2
@ g a 0 a oxa
gwiz GEX g OF oyt oy 0 O
dte® ox @i i 0 ax’
a 02 ya ara _ ox @) ai@) _ de a.
Xu T Gxioxi X‘Bw T X BT X: T odee X

4) We shall denote the number of A things, P heing taken, by the sym!ol (‘;\,) that is, a

binominal coefficient. In addition, we shall give (;\)) the value zero, if A< P,

5) Finally. we shall use the summation conventions consisting of three parts as follows:

R BEE
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(a) repeated Latin indices indicate summation from / to N,
(b) repeated Greek indices indicate summation from O to M,
(c) but capital indices do not indicate sums,
In the case of (¢) we shall frequently replace a with A, B with B, 7 with I, etc.

§ 1. Ordinary extensors. In the manifold X», let us consider a coordinate transformation

(1 D xu, = «\'a(.\’l) (a' i=1, 2, - N)‘
where the function x¢ (x!) is differentiable as often as necessary, and the Jacobian | X (f is different
i

from zero in our domain,

When the N components V@ and N2 components Ta» vary by (1.1), satisfying the rule

(1.2)
[
Taw=X X T
a by iJ o

these components are called the components of a vecfor and a lensor, respectively.
Now, by differentiating (1.1) repeatedly with respect to a curve parameter ¢, we can find the

following series of extended transformation:

a (] i
| x =2z (x),

(Da a (i
X X

i

=X

2)a = a (i a M1 MJ
x X x + X x x ,
(1.3) t ij
: a a @i a (DL (24 a ME (D) Dk
! x =X x +3X x 2 +X,  x x X, e e ,
! : & ik
i
I
| (Ma a (Mi a (-1t (D)
x = Xt x + MXUx x4 (M>2).

According to A. Kawaguchi [9), this transformation (1.3) can be rewritten in the following
condensed form:

(@a al a B, By i, CRIIN
X — X X X el X
(1.4 ) B! Bo!---BAl 74! Tol o Taw—A+1 by lg by

By + Bat -~ +Br =),

where the symbol Y signifies the summation with respect to all combinations ( A1, £z, -, BA) and
B i
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with 7y we denote the number of Bu's which have the same value v. Under (1.4) the coordinate of
a line element of order M (x¢, xWi , ..., x“D1) is transformed to (x@, xDea, ... x¥)a)  bhut
the right side of (1.4) is not linear with respect to x(®)é  Accordingly, the line element can not keep
the properties of an ordinary vector. Now. we employ the following generalized form in place of

(1.4,
(1.5) xt@la = yleda (xi, y0i . xH0EY,
When the N (M +1) components V¢ vary by (1.5), satisfying the rule

(1.6) VI = X VP @B =0 L Miasi= 120N,

these components are called the components of an excontravariant exvector of grade M. Because of

Jacobian lX a | = 0, we shall have the only inverse transformation of (1,6) as follows:
i ¢!
- (B
(1./) Wan— X(w‘u, Bi.

and this coefficient X:: ! is satisfied by

(B)i (a)a B i (Bri (Y)b 67 51:

: =0 0 or X X =
(aa (¥Y)J 0% J ‘aln (B! @  a.

(1.8)

Then these labelled numbers will be called the components of an excovariant exvector of grade M.

Moreover, when the N3 (M +1)2 components Tm:l vary by (1.5), satisfying the rule
[ g

a@a vYi (a)a (87 k
(1.9 T = \
LN:2) kS J (Y)i Bih e o

these components of a mixed third degree extensor which is eXcontravariant, covariant, and ex-

covariant — each of order one.

(@ya
Hence, for the coefficient X(:(; of (1.6) we have the following equation,

(1.10) X::‘:(: - (A ) (X?)'J -K"

which is so-called the Craig's formula, and making use of (1.10), we obtain

{w:la dylada ‘wio dy(B)i ‘@i (Br1.Q

(1.11) X o = X @ = X ¥

=(g){x

a\(e@—-B) (B+1)i
.) x H

i
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Therefore, in the place of (1.4) we can consider the following transformation:

x% = xe (x1),

(@—-Da (B
(@)a —= : =
. x(@a P (a,B=1, 2,-, M),
_ g ja-1 a\(a—B) (B)i
- ﬁgl \ﬂ—l) (XL) * !

which is called the expoint transformation of Craig. Equation (1.12) is linear with respect to
x(@)&, but equation (1.4) is not.

The following properties of exvector which we find in the proofs by A. Kawaguchi [7] are very
useful,

1) When Vei and W« are the components of an excontravariant exvector and of an exco-
variant exvector, and those of grade M, respectively, the following contraction

(1.13) Vei Wai

is invariable by (1.5), that is, a scalar, But unlike ordinary vector analysis there are M +1 kinds

of contractions in our exvector analysis as follows:

Mz

VBT w

@=4 @i

(1.14)

w

4 A4 @i
= a);o( +") VY Wara o (A=0, 1,-M),

1
and V © is another scalar.

2) Furthrmore, we can obtain various exvectors out of one exvector and its derivativds, Let V@i
te an excontravarant exvector of grade M, and differentiate it with respect to the parameter ¢, then

we obtain an excontravariant exvector by the following operation which is known as &-operation ([7]
p. 28).

H a;

H —
(1.15) e v = 3 (=
Ao

(]z) Vac-e~)\.z‘,(ll.-)\) (H=O, lw“,M)‘

SALEH=A) A . .
where vV = d72-A/dtH-» Va+a.i, and the grade of this exvector is M-H, lower than

that of Vi,

In the same manner from B-operation ([7), p. 37), we have

1.16) 3"v = () oM (g —any® N MY <,

A

1Me
(=3

where the grade of this exvector is the same as that of V@i
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Furthermore, from ¢ -operation ({7), p. 44), we have

prver —m (0 ) (MGEZe) v a=0 1,

1.17) =m g (5) (MEET) v GamH 1,
=m B (5 ) (E) v e M,

where the grade of this exvector is M +H, higher than that of Vet
We can find the same operations about an excovariant exvector W .

3) Let Vot and Wa; be an excontravariant exvector and an excovariant exvector of grade M,
respectively, then the sets of the components

vei ang (M-K+a) g (@=0, 1, K=M)

M-K+a,i

are also the components of an excontravariant and an excovariant of grade K, respectively. From

the contraction of these exvectors V®i¢ and (M—j(-!—a) wrcra; V€ obtain the scalar which is the

very scalar V'¥ of (1.14).

We can see, of course, the same properties regarding extensors as the exvectors given atove ([7],
p. 69-139).

§ 2. K-dimentional extensors. The first extention of the extensor has been studied by A

Kawaguchi (§). Now we shall consider a surface element of order M (x¢, P;, Pf\“) T ;(”\)
My
instead of a line element of order M (x¢, x(Dé ,..., x(30DLY in the above section,
where xt =xt (ur) G=1,2,-N; 2=1 2,-,K),
¢ o= _0xt
P)\l dury ’
[ i oK x
_ =_—._._K=,,"'yM,
and P)\(K) Ay Ay ---)\K au)\l durs ...aut\,( ( 1,2 )
i
Since P Ay are symmetry with respect to the indices 41, 42, -, Ak, we can find the

following transformation from (1.1) by differentiation with respect to the K parameters u:

xa = x¢ (xl),

@ @ i
P, =X P,
(21) @ _ @ i @ i J
P'\';2‘) N Xi P)\(z‘; + Xij PPy, i
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a a I3 a i J
Paan = X, Pagy + MX Pra-nPran™

In this case, we have the following formula corresponding with Craig's (1.10),

_ . a
aP}\ y _ (»r 6#(5)  0x%
# - (t) (A (3x’3)/)\(7._4)) ’

Feed

(2.2)

" [ " &
where r) _ 1 2 Hor 0/r = 0

= e d = °*°°v |
Acry (Ap Ay Ay (E)™ Jury outrz -ourg

and d vilwa! oyl 0

v = #! )
oPy Py,

By using v s we denote the number of #,'s which has the same value s, and besides, with

restriction vy + vg +-+ + vy = £, .
In like manner of the definition of extensor we have a following definition; when the quantities

Vi(t) and W:(” vary by (1.5), satisfying the rule
- a i
2.3) v _ aP'\(a) Vi and W"(c) _ aP"(r) who
)‘(L) aPl Per) a aPa i
By Ace)

tr =01, - Msa, i =1, 2,-N; ;,2 = 1, 2,,K),

these quantities are called the components of an excontravariant and an excomvariant K-dimentional

extensor of grade M, respectively.
These coefficients are satisfied by

— — a
2.9 Py Prin _pt gre
’ a J J e .
0 )
oP’\it) aP"’(s) o

In this case the foregoing properties of ordinary extensors are extended as follows: In the first

place, we have M +1 kinds of contractions

Al M A A
(2.5) Vi = B () Vi, WAt N Ao, 1, b,

Secondly, when V(’fu) (t=0, 1,---, M) is given, VZ(:) =0, 1, H=EM)

« . . . Ao A
is also the components of an excontravariant K-dimentional extensor of grade H, and as for W (¢’
a

=0, 1---, M),(M tH'H) W@t (=0, 1,--,H) is the components of an excovariant K-

a
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. A
dimentional extensor of grode H. Therefore, we can see that each of V 4. (2.5) is a scalar.

Finally, from &-operation we have

" a )i 4 H-r | H a
Aary My =0 =D ( r ) e+ o)/ A=)

51

but when we consider the transformation equation of (2.6), we have

—__a
P ;
P A . .
en st v - _—_“fwe" v o=E=Mm.
an A Py, Aary e

That is, we can not obtain the same exvector as the given one.

A
On the contrary, as for Wa(‘), we have the following exvector

"

[

(2.8)

A, H . — = A (LT
Wi = oo () () e

™,

where the grade of this exvector is M-H.

X a a . . .
As for ¢ -and 8 -operation, 9V, and 3V are excontravariant K-dimentional exvectors
ey Aoy

A
of which grades are M + H and M, respectively. And as for Wa(‘ ’, in this case, we can not

obtain an exvector.
§‘ 3, Jacobian extensors. By H. V. Craig (4] the notion of a Jacobian extensor, a generalization
of the extensor, has been introduced and extended to the case of multiple parameters functions [5].
We shall find that Jacobian extensors include weighted and absolute tensors, and scalars as special
cases, and that their properties are similar to those of ordinary extensors.

The point transformation is denoted by

a.n =2t Gry (@ =12, N,

and the expoint transformation by

a+l,a (@)a P+,

(1.11) X = X(P)r X (o, p =0, 1,-,M—=1).

. . 4 (a)a . .
In addition to coefficients X “and X o of tensor and extensor analysis, the new transformation
r r

@ P 5 .
equations contain the symbols X . and X which are based on X and X, namely, on the weighted
@ A

7w
. !'(. and are defined as follows:
«

a |w }
Jacobian ' X ) ’ and | X
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s =

(3.1) XT=(p) X" x" =

Y

) )—((P—A) (A=, P=p).

i r . .
If xa, 5" and x  are any three coordinate systems and we correlate the indices a, 2, and p to

these coordinate systems, then
A _a
(3.2) X X =X
a T p
Therefore, when we correlate indices p and ¢ to the same coordinate system, we have
P @ NG
X X =9
o o
Now. when the quantities V® and W vary by (1.1) satisfying the rule

’
@

@ P @ »

(3.3) vV =V X,, and W =WpX
these quantities are called the components of a Jacobian contra- and covariant exvector, or briefly
a J-contra and a [-covariant exvector, respectively.

Moreover, when the N4 (M +1)4 labelled numbers E:'ZC.G vary, satisfying the rule,

a-s
) @-yecoo peTteu @ T (Y)e (w)w ” ®
(3.4) E = E X X X X X
Bsd-S Teww.v [ B (7)¢ (8)a u 7

these labelled numders will be called the components of an extensor of grade M and weight w which

is J-contravariant, J-covariant, excontravariant, excovariant, contravariant, and covariant— each of
order one,

As in extensor analysis, there are M +1 kinds contractions as follows;

(3.5) vi=z () E = n  (§)E XX 0=0, 1,

Namely, V' s an absolute scalar,

. - ‘ -4
For the examples J-extensors, let us consider the quantities Vo(#) and Vg, = (114”) VM

- 4 . .
(O=a=M), where V and V" are a scalar of weight—w and w, respectively., Furthermore, we
. . abe
shall show that similar examples exist for higher order weighted tensors, that is, if T is a
contravariant tensor of order 3, of weight w, then

o @®a-Bheye _ fA, B, I'\ .abec (4+iB-20-1)
6 E 5_{M,A i 1 ”

is an extensor of excontravariant of order 3 and J-covariant of order one, where
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{A, B, r} _ A'B'T!
M, 4 ME4"T (A+B+T—2M—4)!

or 0

for (A+B+T—2M—4) =0 or <0

On the other hand, if T”I is a covariant tensor of order 2, of weight w, then
Mbce

- _ M v - M~-4-B-1)
B.7 Ea-Bb~7c - kA,B,T‘ ) Mebe
is an extensor of J-covariant order 1 and excovariant order 2.

Finally, we shall obtain the following effective formula by means of the Leibnitz’s rule and by the

same method as in the proofs of the foregoing equations:

(Y‘Ohc Bb Cc)a, _ Em.ﬂh-'yu B C _ Em'ﬁl)o‘lc Lf B L!7 C
Bh Ye Bb S T ve N
‘M [ ahe NG )] _ @ +Bheye .
(A)(T M Aa. Bh Cc) =E SAauzBﬂhCYc
(3~8) . h o .
e Al B L,
: § aa e BbL T Ye¢ n
! g / M- 4 b ¢ . .
(M, B V=g BC - L B L ¢
| Mbe a+Bb .y a.BLeye d ¢

where this quantities L can ke taken to Le the extended components of connection of our space.
§ 4. Generalized extensors. M. Kawaguchi has introduced the notion of a generalized ex-
tensor, another generalization of the extensor, calculated and studied powerfully M1, (123, 113D).
The point transmation is denoted by

i i

.1 =G G = L2 N,

and the expoint transformation by

(11D =X L g = 01 M=D).

Here, in the place of (1.11) we employ the following condensed form:

'

TR)) o= XA =1 2, MN),

where we use the capital indices I, J, K which denote the expoint indicies ai, Bj, Tk, that is, I =
aN +1i, ] =B8N + j.
When F is a function of the expoint x/, the derivatives F/l Ly.od, (r = 1,2,---,k) are

transformed by the expoint transformation (4.1) as follows:
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J
F, = X,'F,

1

Fy , =X'X? F X, F
#.2) Ioa, T gy Ap, Ly g, T X g Ey e ,
VR Ty 1
Fll P th X12 XIL. FJ1 g eued + o+ le J ST I FJI‘

F11 Iyt (r=1. 2,--, k) is symmetry with respect to I,, Iz,~--, I~. When we choose the

dictionary permutation which will be denoted by I(ry among the sets of indices of which combination
is the same, we have the independent equations of (4.2) in a brief form:
J(s)

4.3) I'I(r) = UI(T) F.;(s) (s=1, 2, -, r),

where, according to the same symbols used in (1.4), we have

J(s) 7! 12 7 7
4.4 U = 1 2 s
@ 10 arasl-as bibobr 51! X”(ap Tayy “ gy ) .
k r M+)'—l
, 76 o oM (Mol
Since we have l U = { , ro1 |
1(r) J

there exists the inverse transformation of (4.3), and we denote the coefficients with
Vi e 010 VI 0

In a similar way of the foregoing definitions, when the quantities (Dl(") and WI(,) vary by (4.1),
satisfying the rule

1(r) 1(r) J(s) J(8)
4.5 [/} = 1] and ¥ =
.5 J(s) 1(r) 1(r) J(s)
these quantities are called the components of a genmeralized contra -and covariant exvector, or briefly

a g-contra and g-covariant exvector, respectively. If k=1, our g-exvector is reduced to the ordinary

exvector.
‘Now we repeat the partial differential operation / —1 times for the scalar product of two ordinary

@i X . J
extensors U° Va. with respect to the expoint x ~ as follows:
¢

@i
n=U Vv .
@i
@, i @, i @, @, i
. = 272 14 . _ 272 1
(4.6) p2=U w Va, iy)iayi,= U u Via, iy 14y iy
@, i @, i 0
+UrPPUYY v, . where U = o=
@y iy [ 2 OxX®p by

Using (1.14). we have following scalars
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4 M—dy (A +a @, i
b= . Z—o ( xA1 1) vt Vi, vayy o, Ai=0, L M),
=
&7
Iy, M=d M4, A +a\ (A @y i, @i
Ay dap i 1+ay 3+ a2 24, 1 6
[. f _-a12=0 mzéo ( Ay ) ( Az ) v (~U Verrap 1, ) 1y teg) iy,
Then,
. A +ay\ (Astaz iAs +a
. ¥ (A t+a s+ag) | (Agstag
(4.8) (1 ( A ) ( Ay ) (" ) (A 4@, 08 [y +aydig (g tag) ig)
is a reduced covariant g-extensor, and
1) (Ass1 +asa Al +a (=3s)!
) P — §+1 s41) ., t I3
(4.9 : ( 541 ) ( A, ) @ ar a2l as b Bl by 25 41!
(wl il Uw4 i; e ®s ls)
He+d) (a ) i(@+d)(a,) li(e+ A) (as)

(ay=0,1,M—Ay; 5 a;, =0, 1,--,M—4;)

is a reduced contravariant g-extensor,

where
@y iy =(( (U“lil Uwsylis%—l)
H(@td) (@) flag i sy dgqn (@ g tdg12) Lgg
[ 20 S @ Ys
X U $+2 312) ) ) U s‘ﬂ’l s:fll’ ete.
/‘\“s:u,l - “‘sw.tl)’*seal

. @i u . .
We obtain the following contraction for U “and €7V . the latter has been introduced in
@

(1.18):
H o v _ (
S — a+ty M—-a—y (v)
~ Vou =H § ¢ D ( a ) (M—H“a’) (w+v)i
H H=d-H nt A @i U vV ja+A+v\ (M+a—A— v )
— _
(4.10) by = H! mZ::o ( A ) v .EO( D ( a+A )(M—H,—a—A) V(w~s-.4~s-v)i

H=0,1, -, M;A=1. 2, M-H),

and applying this operation / — 1 times, we obtain

nyH, 2 | e e ag+Aa ol Yo (@a+Aa+va

(1D Prok, = "_IZI H,! m§=0 ( Aq ) vmz=0 (=D ( ag+Aa
M—aq—Aa— va S @y iy v2) @, i,
% (A'VI—H(;—IJ((L'—Aa) (V(apl vy vy iy v ) (@g 5 +vy) i2 U ’

------ , anb so on,

For 3 Vea; and Y V.. by means of the same manner as in the previous cases, we can find many

reduced extensors out of more generalized g-extensors.
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