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EVALUATION OF YIELD ACCELERATION FACTOR
OF EARTH-SLOPES BY LIMIT ANALYSIS

BY
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and Wai F. CHEN***
(Received 30 November 1982)

SYNOPSIS
The upper bound technique of limit analysis of perfect plasticity is applied to evaluate the
stability of slopes induced by earthquake load. The analysis considers the following cases.
1) homogeneous and isotropic slope
2) effect of upper slope angle «
The computer models developed are based on the following conditions.
1) plane strain
2) plane and log-spiral failure surfaces
3) pseudo-static earthquake loading
4) uniform horizontal distribution of lateral acceleration
5) Coulomb creterion for failure with constant ¢ and ¢.

I. Introduction

The conventional method for evaluating the effect of an earthquake load on the stability of a
slope is the so-called “pseudo-static method of analysis”. In this analysis, the inertia force is treated
as an equivalent concentrated horizontal force (the “pseudo-static force”) at some critical point
(usually the center of gravity) of the critical sliding mass. The inadequacies of this method for slope
stability analysis are discussed in various papers by many authors (for example, see Chen , 1982).
Despite these criticisms, the pseudo-static method continues to be used by consulting geotechnical
engineers because it is required by the building codes, it is easier and less costly to apply, and
satisfactory results have been obtained since 1933. This method will continue to be popular until an
alternative method can be shown to be a more reasonble approach.

In this study, the upper bound technique of limit analysis (Chen, 1975) is applied. The limit analysis
method is based on the assumption that soil deformations follow the flow rule associated with the
Coulomb yield condition. This idealization requires that a plastic shearing deformation must be
accompanied by an increase in volume. Thus, the rigid body type of sliding of a soil mass must occur
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discontinuously with an angle ¢ between the velocity vector and the discontinuous slip surface (Chen,
1975).

At the state of collapse, the rate of work done by the external loads must exceed or at least equal
to the internal rate of energy dissipation along the critical slip surface including its own weight as well
as the inertia force induced by earthquake force. By equating the external rate of work to the internal
rate of energy dissipation for an assumed failure mechanism, we obtain an upper bound solution to the
yield acceleration coefficient factor, K..

The effect of an earthquake load on a potential sliding mass is now expressed in terms of an
equivalent static horizontal force determined as the product of a seismic coefficient factor K, and the
weight of the potential sliding mass.

Herein, we are concerned with the calculation of the critical or yield horizontal force correspond-
inertiaing to the yield acceleration factor K., at which a condition of incipient slope movement is
possible along the potential sliding surface.

In this paper, the computation of the yield acceleration factor K. by the upper bound technique
of limit analysis is based on the following three possible local failure mechanisms,

(1) Plane failure mechanism

(2) Log-spiral failure mechanism passing through the toe

(3) Log-spiral failure mechanism passing below the toe

II. Plane Failure Mechanism for a Homogeneous and Isotropic slope

Figure 1 shows the first of the three possible failure Mechanisms i. e. plane failure mechanism.
Region ABC translates as a rigid body with the velocity v which makes an angle ¢ to the slip surface
AC. The failure mechanism is assumed to end at point C in Fig. | with the vertical height H+ Lsina.

The failure mechanism is defined by the angle of slip surface . The length L is related to the

Ke

H+Lsina

G4

Fig.1 Translational Local Slope Failure Mechanism with an upper slope angle: «
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slope angles o, 8 and slope height H as

H sin(B—86)

L= sinf sin(6—a)

(1)
The rate of internal energy dissipation along the slip surface AC is found by multiplying the

length of the slip surface by C times the discontinuity in velocity, Vcos ¢ (Chen, 1975) where c is

cohesion and ¢ is internal friction angle of soil as defined in the Coulomb yield condition.

( H+ L sin o
sin @

) Vcos ¢ (2)

The rate of external work done by the soil weight of the sliding mass with unit weight, 7 is

% HL(cos a— i;r;i, )'stin(H— ?) (3)

by the surcharge load with intensity P is,
(PL) V sin(6—¢) (4)

and by the inertia force with seismic coefficients xK. is

K. % HL(cos a— i;‘;‘z )chos( 6—¢) (5)
xK.(pL) Vcos(8—¢) (6)

where xK is the yield acceleration factor corresponding to the surcharge load p whose magnitude
can be related to the yield acceleration factor of the sliding soil weight, K, through the coefficient,
x. The value of x can be near unit.

By equating the total external rates of work to the internal rate of dissipation, an upper bound
value of K is obtained

K=F(6) (7)

ccosgsin(f—a) _ .\ _7H sin(8—a) _
_ sin(B—80) cos(8—¢) ptan(6—¢) 2 sinB tan(6—¢)
- yH sin(B—ea)
2~ sing X

The function F(#) has a minimum value when @ satisfies the condition

oF _
ﬁ_o (8)

Solving Eq. (8) and substituting 6 so obtained into Eq. (7), we obtain the least upper bound solution
for the yield acceleration factor, K. corresponding to the failure mechanism shown in Fig. 1.

K:=min. F(8) (9)

III. Log-spiral Failure Mechanism for a Homogeneous and Isotropic slope

The plane failure mechanism of Fig. 1 is a translation type of sliding. Herein, we consider two
cases of rotational log-spiral failure mechanism : One passing through the toe (Fig. 2) and the other
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H+ Lsina

A
%/

Fig. 2 Rgtatior)lal Local Slope Failure Mechanism with an upper slope angle : a (passing through
the too
below the toe (Fig. 3). The region ABC or ABC'C rotates as a rigid body about the as yet undefined

center of rotation O with the angular velocity  relative to the materials below the logarithmic
failure surface BC or BC'. Here, as inprevious work (Chen et al, 1969, 1971) the parameters H, 6,
and 6, are used to define the failure mechanism.

Case 1:slip surface passing through the toe

Figure 2 shows the case of sliding through the toe.
The geometrical relation between L and H is

2 ?i%fiﬁ {sin(0a+ @) exp[(0n— o) tan ¢ —sin(8o+ @) (10)
L _ sin(6n—060) sin(fx+8)

7o sin(@nta) sin(@x+a) sin(8—a)

{sin(0x+ @) exp[(8x+ Bo)tan g ] —sin(fo + @)} (11)

from which, we have

L _ sin(fn— o) sin(f—a)
H = sinBsin(0n+ @) {sin(8n+ a)exp[(8s— o) tan ¢] —sin(o+ @)}

sin(8.+8)
sinBsin(0x+ @)

l\

(12)

The rate of internal sliding dissipation of energy occurred along the discontinuous sliding
surface BC has the volum (Chen, 1975)
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Fig. 3 Rotational Local Slope Failure Machanism with an upper slope : @ (passing below the toe)

rdé
cos ¢

./;(CVs)dSZ /:'(chosqS)

_crQ
2tang

{exp [2(8,— Go)tanp] —1}
=cC 73 Q Fc (13)

The rate of external work due to soil weight for the region ABC can be found by a simple
algebraic summation Y,— Y,— Vs, where ¥,, ¥, and Y are the rates of work done by the soil
weight in region OBC, OAB and OAC, respectively.

_ yrs 2
3(1+9tan¢)

—3tan ¢ cos 8o —sin o}

v {exp[3(8»—6,)tan ¢ }(3tan pcosGx + sin bx)

=y rs Q F

. 3
¥, = 1228 QL

(2 cosfo— Lcosa) sin(f,+a)
Yo Yo

=yrs Q F
and

. 3
¥ = £ exp (64— o) tan ¢ )(sin (64— 00) — L-sin(6,+ )

(14)

(15)
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X {cos o — i— cos a+cos B exp(8.—6o)tang])

=yrs QF;s (16)

Similarly, the rate of work done by the inertia force on the soil weight can be found the simple

summation by Vi— Vs— Ve, where Y, Y; and ¥s are the rates of work done by the horizontal
inertia force due to soil weight in region OBC, OAB and OAC, respectively.

. yri QK

Y. ){(Btan¢ sinfs—cos 6x) exp[3(6x—6o)tand]

T 3(1+9tan’ 4
—3tan¢ sinfo +cos bo}

= K)’ }’3 Q F, (17)
. 3
YSZ—%&{Z —f— sim9o+(—£—)2 sine} sin(fo+a)

=K Y 73 Q Fs (18)

and
3
Vo= y—r%gﬁexp [(8x—8o)tanl{sin(fr— o) — %sin(ﬁm‘-a)}

{exp (8r— o) tansinfn+sinfo + ﬁ— sina}

=KyriQFs (19)

Further, the external rates of work due to the surcharge boundary load p and its associated

inertia force are due to surcharge
L L
2 = —_ "
prs 2 e cos a(cos 6, 57, cos a)
=pr; QF (20)
due to inertia force of the surcharge
N SN A
xK pri 2 - (sinfo+ 3rs sina)

=xK p?’g Q Fq (21)

By equating the rate of internal energy dissipation to the total rates of external work, we have

_ CFc_')”’o(Fl'—Fz—Fs)—pr
K= (F.— Fs— Fo) + xPF, (22)
that is
CFae sin(8—a) y HUF\—F>— F3) —bF
K=F (0o, 0n) = ¢ sinf {sin (B + a)expl(0x— o) tang—sin (G, + a} 1} ’
o Uk sin(B—a) y H(Fs— Fs—Fs) L xbF,
sinf {(sin(Gx+a)exp(Gx— o) tan g—sin (6o + @)} XpEaq (23)

The values of K as given in Eq. (23) are upper bound solutions for the yield acceleration
factor corresponding to the log-spiral failure mechanism as shown in Fig. 2. Using the conditions
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oF _ OoF _
T 0 and FT 0 (24)

and solving Eq. (24), we obtain the critical values of 6, and 6, which give the minimum value of
K, or K. as
Kc=min. F(6,, 64) (25)

Case 2:slip surface passing below the toe
Figure 3 shows the case of failure surface passing below the toe. Similarly relations between
D and H, and L and H can be found as

D _sin(B—8")
H ™~ sinf sing (26)
H o sinB (6ot @) —expl(6a— B0 tan ) tan ¢)sin(Ga+ ) (27)

7o  sin(a—8")
L _ sin(6.+8") _ _
T en(a— ) {exp[(6»— 6o )tang]—1} (28)
The rate of external work done by the region ABC’C can easily be obtained by first finding
rates of work Vi, ¥;, V. and 2z, due to the soil weight in regions OBC’, OBA, OAC’ and ACC,
also Y., Vs, Ys and z, due to the inertia force in each region respectively.
The functions ¥; to Vs are the same as those given in expressions (14) to (19). The functions
%, and 2 resulting from the region ACC’ are given by (Fig. 3)
o sin(8—4")

S — 3
Zi=7 vy T
=77 7o ' 2 sinBsinf

{cos 90—f—ocosa—%(%)(cotﬂ'+cotﬁ)}
=7 7’3 QF; (29)

and

2 H

z.= K7 73(%)2 —M—{sinﬁﬁ- %sina-% 3N

2 sinfsinf’

=K rs Q Fs (30)

The external rates of work due to surcharge boundary load p and its associated inertia force
must be added .These expressions are the same as those defined in Eq. (20) and (21). By equating
the rate of internal energy dissipation to the total rates of external work through simple algebraic
summation of ¥’s and z’s, we obtain

_ CFc_’)’ T’o(Fl_Fz"Fa_F7)_DFp
K= (Fa— Fs— Fo— Fo) + xpF, (31)

That is

CFc_ i _ .VHSin(a_B/)(Fx—Fz_Fa_F?) —DF
K= F(0o,6:,8) = sing’{sin(6o+ ) —expl(x— o) tan ¢lsin(fs + )]~ P77
yH sin(a—B")(Fi— Fs— Fs— Fs)
sinB {sin(0, + @) —expl(Gn— B, )tan g sin(Gr+ a)] * XPFa

(32)

K has a minimum value and, thus, indicates a least upper bound solution when 6,, 8, and 5’
satisfy the following conditions
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oK. _
36,

oK.
900

_ oKc _
=0 and 98 =0 (33)

0,

From which the minimum value of K, i.e.; K. is obtained

Kc= min. F(Ho, eh,B’) (34)

VI. Numerical Results

Extensive numerical results have been obtained by this program. Some of the results are tabulated

in Tables 1 to 6 and illustrated graphically in Fig. 4 to 10.
(A) Homogeneous and Isotropic slopes

(1)

(4)

(5)

(6)

Tables 1(1)and (2) present the yield acceleration factor K. corresponding to the plane failure
mechanism and the log-spiral failure mechanism, respectively. The stability number Ny =H, -Zi is
taken to be 6.667 and the surcharge load p is zero.

Tables 2 (a) and (b) present the K. values corresponding to several sets of N and « values. It can
be seen by comparing Tables 2 (a) with 2 (b) that K. of log-spiral failure mechanism is less than
that of plane failure mechanism. This shows that log-spiral failure mechanism generally controls
the local slope failure. The relationship between the yield acceleration K. and the stability factor
N corresponding to the log-spiral failure mechanism is shown in Fig. 4.

Figure 5(a)and (b) represent the relationship between the K. values of log-spiral mechanism
normalized by the K. values of plane mechanism and «. These ratios of K¢ iog /Kc,piane are all less
than unit, so it shows clearly that the log-spiral failure mechanism generally controls the failure.
Figures 6 (a) and (b) and 7 (a) and (b) show the relationships between L/r, and a and the relationthip
between 6, 6 and a, respectively.

Figure 8 presents the stability number N for the case where the log-spiral failure plane passing
below the toe for three values of ¢ =5, 10°, 40°, while in Figs. 9 (2) and (b), the relationships
between the stability number Ny and the slope angle 8 are shown.

Tables 3 (2) and (b) compare the solutions for the case where the slip surface passing through the
toe with that passing below the toe.

The case controls the failure is denoted by the symbol * in the two tables. Tablesd hows the
variation of D/H with respect to changing a and Ns.

Based on these results, the variation of the stability number N with yield acceleration K. is
shown in Fig. 10 where the solutions corresponding to the failure mechanism passing through the
toe are cut off by the solutions passing below the toe.

The effect of surcharge p and xK on K. is show in Table 5 again, it is seen that the log-spiral
failure mechanism controls the failure where * denotes the case passing below the toe.

A comparison of the present limit analysis solutions with existing limit equilibrium solutions is
given in Table 6. The factor of safety obtained for the limit equilibrium solution corresponds to
the collapse state of the limit analysis solution. Then, if these solutions are identical, the factor
of safety so obtained should be very close to unity.

This procedure is illustrated further by the following example. For the case of xK=0, a=0, ¢=
40°, c=900psf, y =60pcf, H=100 and p=120psf, the value of K. from limit analysis is used as input
data to determine the corresponding factor of safety in STABL program which is a limit
equilibrium program developed at Purdue University. Further, note that the circular surface is
assumed in the limit equilibrium method, while the log-spiral surface is used in the present limit
analysis method. The results are seen somewhat different.
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Table 1(a) —Kc—for Long—Spiral failure mechanism

with p=0.0, xK=00, Ns =6. 667, (r—CH=0.15>

"“‘:" sl | Slope angle Slope angle 3 (degrees)
Q
(degroes) (degrees) 90 75 60 45 30 l 5
0 0 0.080
5 0 0.098 0.150 0.165
5 0.051 0.084 0.091
10 o] 0.053 | 0.151 0.221 0.253
5 0.042 | 0.143 | o0.192 0.188
10 0.027 0.115 o.117 0.124
15 o] 0.146 | 0.253 0.322 0.356
5 0.135 | 0.239 0.289 0.291
10 0.132 | 0.217 0.215 0.224
15 0.121 0.132 0.140
20 0 0.074 0.230 | 0.343 0.420 0.460
5 0.066 0.219 0.328 0.391 0.399
10 0.057 0.206 0.308 0.312 0.324
15 0.045 0.189 | 0.227 0.238
20 0.034 0.166 | 0.148 0.164
25 0] 0.148 0.307 | o0.428 0.517 0.568
5 0.14| 0.300 | 0.415 0.493 0.496
10 0.133 0.285 | 0.395 0.41| 0.426
15 C.123 0.269 0.321 0.333
20 O.111 0.246 | 0.24] 0.242
25 0.093 0.150 0.163 0.183
30 0 0.002 0.215 0.380 | 0.504 0.615 0.683
5 0.209 0.371 0.499 0.600 0.607
10 0.202 0.360 0.481 0.513 0.533
15 0.192 0.345 0.416 0.431
20 0.181 0.324 0.335 0.352
25 0.165 0.239 0.254 0.277
30 0.145 0.160 | 0.177
35 0 0.063 0.277 0.449 | 0.595 0.715 0.811
5 0.059 0.271 0.441 0.583 0.715 0.725
10 0.054 | 0.264 0.431 0.566 0.621 0.645
15 0.050 0.256 0.420 | 0.518 0.533
20 0.049 0.249 | 0.402 0.438 0.450
25 0.036 0.232 0.329 | 0.346 | 0.37]
30 0.026 0.214 0.248 0.267
- 35 0.014 0.151 0.169 | 0.190
40 o} 0.116 | 0.333 0.516 | 0.677 0.839 0.950
5 0.113 | 0.328 0.508 | 0.666 0.819 0.855
10 0.110 | 0.322 0.499 | 0.651 0.736 0.767
15 0.109 0.318 0.487 0.627 0.641
20 0.106 0.315 0.482 0.552 0.562
25 0.094 | 0.298 0.440 | 0.444 0.469
30 0.086 0.278 0.336 | 0.358
35 0.075 0.235 0.255 | 0.279
40 0.061 0.156 0.177 0.202
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Table 1(b)

—K¢—for Plane Failure Mechanism
with p=0.0 xK=0.0
_ C _
Ns=6.667, (55/0.15)

Friction Slope Slope angle B (degrees)
angle ¢ angle a
(degrees) (degrees) 90 75 60 45 30 15
0 0.342
5 0 0.105] 0.247|0.347|0.426
5 0.105| 0.247]0.347|0.568
10 0 0.181| 0.324|0.430{0.511
5 0.181| 0.324|0.430|0.648
10 0.181 [ 0.324]10.430(1.192
15 0 0.067| 0.252] 0.399{0.512/0.598
5 0.067| 0.252] 0.399|0.512|0.728
10 0.067| 0.252| 0.399]|0.534(1.258
15 0.067] 0.252] 0.399{0.626
20 0 0.134( 0.319} 0.472}0.595|0.687
5 0.134) 0.319| 0.472(0.595{0.811
10 0.134} 0.319 0.472|0.6111.324
15 0.134| 0.319] 0.472]0.695
20 0.134| 0.319] 0.481]0.935
25 0 0.195| 0.383] 0.544|0.679]0.781
5 0.195| 0.383] 0.544|0.679]0.896
10 0.195| 0.383] 0.544/0.690]1.393
15 0.195| 0.383| 0.544(0.765
20 0.195| 0.383] 0.549(0.997
25 0.195) 0.383] 0.595]1.856
30 0 0.022 | 0.252| 0.444 )] 0.615/0.766{0.822
5 0.252| 0.444 | 0.615(0.766{0.987
10 0.252) 0.444 | 0.615(0.772]1.465
15 0.252| 0.444 | 0.615|0.836
20 0.252] 0.444 ] 0.617(1.052
25 0.252| 0.444 | 0.654|1.865
30 0.252] 0.4441 0.775
35 0 0.076 | 0.304| 0.502| 0.687(0.856(0.991
5 0.076 | 0.304| 0.503| 0.687(0.856/1.084
10 0.076 | 0.304| 0.503| 0.687(0.858|1.540
15 0.076 | 0.304| 0.503) 0.687(0.910
20 0.076 | 0.304| 0.503 | 0.687|1.108
25 0.076 | 0.304| 0.503 | 0.714(1.874
30 0.076 | 0.304| 0.503| 0.820
35 0.076 | 0.304| 0.513{ 1.119
40 0 0.124 | 0.353| 0.560] 0.759(0.951{1.112
5 0.124 | 0.353| 0.560| 0.759]0.951(1.190
10 0.124] 0.353| 0.560 | 0.759(0.951(1.622
15 0.124 | 0.353| 0.560| 0.759|0.989
20 0.124 ] 0.353| 0.560| 0.759(1.166
25 0.124] 0.353] 0.560] 0.775(1.883
30 0.124! 0.353| 0.560 | 0.865
35 0.124| 0.353| 0.564 | 1.135
40 0.124] 0.353) 0.610| 2.117
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Table 2(a) Comparison with Ns for Lg-spiral Failure Mechanism
with ¢=40°, #=60°
p=0.0, xK=0.0
Log-spiral Failure Mechanism —Kc-

N 2.0 5.0 6.667 10.0 13.333 20.0

S| (c/yH=0.5) | (3/YH=0.2) | (c/yH=0.15)]| (c/yH=0.1)| (c/YH=0.075)] (c/yH=0.05)
0° 1.354 0.668 0.516 0.335 0.225 0.096
5° 1.171 0.657 0.508 0.331 0.223 0.094
10° 1.035 0.643 0.499 0.325 0.220 0.093
15° 0.915 0.623 0.487 0.319 0.216 0.091
20° 0.807 0.557 0.482 0.311 0.210 0.088
25° 0.710 0.467 0.444 0.299 0.203 0.085
30° 0.620 0.382 0.336 0.281 0.193 0.080
35° 0.536 0.301 0.255 0.205 0.177 0.072
40° 0.457 0.223 0.177 0.127 0.099 0.060

Table 2(b) Comparison with Ns for plane Failure Mechanism
with ¢ =40°, 3 =60"
p=0.0, xK=0.0
Plane Failure Mechanism -K.-
Ns 2.0 5.0 6.667 10.0 13.333 20.0
(c/YH=0.5) | (3/YH=0.2) | (c/YH=0.15)| (c¢/YH=0.1) | (c/YH=0.075)] (c/YH=0.05)

0° 1.458 0.711 0.560 0.388 0.287 0.170

5° 1.458 0.711 0.560 0.388 0.287 0.170
10° 1.458 0.711 0.560 0.388 0.287 0.170
15° 1.458 0.711 0.560 0.388 0.287 0.170
20° 1.461 0.711 0.560 0.388 0.287 0.170
25° 1.499 0.711 0.560 0.388 0.287 0.170
30° 1.595 0.712 0.560 0.388 0.287 0.170
35° 1.781 0.738 0.564 0.388 0.287 0.170
40° 2.117 0.826 0.610 0.395 0.287 0.170
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Table 3(a) Comparison between through toe and below toe

of —Kc—with ¢=10° 8=60°

Ng 1.0 1.5 2.0 | 2.5 | 5.0 |6.667

a c/yH (1.0) | (0.667) | (0.5)] 0.5)] (0.2) | (0.15)
* (1) 0.925 0.676 | 0.552]0.478|0.323[0.053

0 (2) 2.863 1.520 | 1.142|0.917|0.515/0.368
*(1) 0.818 0.581 | 0.462|0.390{0.214|0.042

3 (2) 2.452 1.561 | 1.160/0.779]0.397[0.275
(1) 0.727 0.496 | 0.375|0.306{0.186{0.027

o

10° 4 (g 0.492 0.346 | 0.273]0.226|0.141{0.081

(1) : Through Toe
(2) : Below Toe

* . Control the failure

Table 3(b) Comparison between Through Toe and Below Toe of —Kc—
with ¢ =40°, g =60

Ns 1.0 2.0 5.0 6.67 10.0 13.33] 20.0
o c/8§H(1.0)] (0.5) (0.2) (0.15)] (0.1) [ (0.075)(0.05)
00 (1) 1.788 1.354| *0.668| *0.516| *0.335| *0.225f*0.096
(2) *0.861 | *0.852 0.849| 1.401] 1.060| 0.887| 0.716
5o (1) 1.597 1.171| *0.657| *0.508| *0.331| *0.223| *0.094
(2) *0.720 [ *0.714 0.709] 0.706/ 0.706] 0.706] 0.656
100 (1) 1.434 1.035 0.643]| *0.499| *0.325( *0.220| *0.093
(2) *0.598 | *0.595| *0.594| 0.593] 0.593] 0.593] 0.609
150 (1) 1.293 0.915 0.623| *0.487| *0.319| *0.216| *0.091
(2) *0.502 | *0.501 | *0.501| 0.500f| 0.500] 0.500| 0.500
200 (1) 1.170 0.807 0.557| 0.482| *0.311{*0.210|*0.088
(2) *(0.,425 | *0.424 [ *0.424| *0.424| 0.423] 0.423]| 0.423

(1) : Through Toe

(2) : Below Toe

* : Control the failure
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Table 4 Variation of D/H with « and Ng
NS 1.0 2.0 2.5 4.0 5.0 6.667
a Ni(l.O) (0.5) (0.4) (0.25) (0.2) (0.15)
(degrees) S
0 0.547 0.467 0.458 —-— - -
5 0.351 0.311 0.262 -— - -
10 0.262 0.262 0.262 0.262 0.262 -
15 0.262 0.262 0.262 0.262 0.262 -
20 0.262 0.262 0.262 0.262 0.262 ] 0.262
Table 5 —Kc— Comparison between p and xK
. _ C _
with Ns=6.667, (550.15)
$=40°, B =60°
p =0.0 p = 120 psf p = 120 psf
xK = 0.0 xK = 0.0 xK = 0.5
S lope
angle a plane log-spiral plane log-spiral plane log-spiral
(degrees)
0 0.560 0.516* 0.563 0.513* 0.552 0.506*
5 0.560 0.508 0.563 0.505 0.552 0.499
10 0.560 0.499 0.564 0.496 0.551 0.490
15 0.560 0.487 0.564 0.484 0.550 0.477
20 0.560 0.482 0.564 0.467 0.549 0.461
25 0.560 0.444 0.565 0.443 0.548 0.436
30 0.560 0.336 0.565 0.339 0.546 0.336
35 0.564 0.225 0.568 0.257 0.546 0.255
40 0.610 0.177 0.607 0.177 0.577 0.176
*Below Toe
Table 6 Factor of Safety Obtained by Limit Equilibrium Method
[
15 30 45 60 75 90
(degrees)
Factor of
Safety 0.920 0.885 0.891 0.933 1.006 1.025
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Appendices

Physical Limits and Constraints
Several physical constraints as imposed by the geometrical consideration of the failure mecha-

nisms must be included in the programs in order to effectively execute OPTIMIZATION techniques.
These conditions are considered separately for the following three cases.

Case 1: plane failure mechanism and log-spiral failure mechanism passing through the toe for
homogeneous and anisotropic slopes
One constraint for the translational failure mechanism and four constraints for the rotational

failure mechanism are identified from the physical considerations. Referring to Fig. 1 and 2, these

conrstaints are:

(1)

The rate of external work done by the inertia force KW must be positive, that is, the inertia force
must be moving away from the slope in order to reduce the stability of the slope;
The yield acceleration factor, K¢, must be positive;

In case of the rotational failure mechanism, the conditions H/r, and L/r, must be positive,
Case 2: log-spiral failure mechanism passing below the toe for a homogeneous and isotropic
slopes

In addition to items (1), (2) and (3), the conditions D/H must be positive, if this failure mechanism
is a possibility (Fig. 3).

Tce geometrical relationship of L and H, D and H must be specified according to an actual soil
profile or boundaﬁl conditions, so that a desirable praactical solution can be resulted. For some
combiations of X—— or Ns, ¢, 8 and «, the minimum K. value can be associated with an infinite
value of L/H ancf D/H ratios. This is the reason why an upper limit of L/H and D/H must be
specified in order to confine the numerical results within a reasonable range.
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