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ON LIMIT SEISMIC FACTOR IN NONHOMOGENEOUS,
ANISOTROPIC SLOPES

BY
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(Received November 30, 1983)

SYNOPSIS

Sudden ground movement during earthquake induce large inertia forces in slopes. As a con-
sequence, the inertia forces moving away from the slope tend to reduce the stability of the slope.

In this paper, it is attempted to evaluate the yield acceleration and the correspondig failure
mechanism in a slope of anisotropic and nonhomogeneous soil by means of the upper bound techniques
of pseudostatic limit analysis.

The term “anisotropic” means anisotropic cohesion strength and “nonhomogeneous”, linearly
varying cohesion strength in the direction of depth. The method of limit analysis is derived from the
assumption that soil deformation obeys the flow rule associated with the Coulomb yield condition and
volume increases as a plastic shearing deformation takes place.

Another assumption that soil mass slides with the angle ® between the velocity vector and the slip
surface like a rigid body, governs motion of the soil mass. Thus, obtained optimize solutions by
“reduced gradient method” are good tendency. Also some results are compared with the ones
caluculated by previous investigators to be in good agreement.

I. INTRODUCTION

Herein, the term “Nonhomogeneous soil” means only the cohesion strength, ¢ which is assumed
to vary linearly with depth (Fig. 1(c)). Figure 2 summarizes diagrammatically some of the simple
cutting in normally consolidated clays with several forms of cohesion strength distribution being
considered previously by several investigators. (Lo, 1965, Odenstad, 1963, Reddy and Srinivason, 1967,
Taylor, 1948).

The term “Anisotropic soil” implies here the variation of the cohesion strength, ¢, with direction
at a particular point. The anisotropy with respect to cohesion strength, ¢ of the soil has been studied
by several investigators. (Lo, 1965, Odenstad, 1963, Reddy and Srinivason, 1967, Taylor, 1948). It is
found that the variation of cohesion strength, ¢, with direction approximates to the curve shown in
Fig. 1 (b). In this paper, the variation of the apparent friction angle ¢ is not considered with respect
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Fig.2 Some Types of Linear Variasions of Cohesion With Depth

to either the nonhomogeneity or the anisotropy. In the following we assume that the cohesion strength
¢,, with its major principal stress inclined at an angle i with the vertical direction, is given by
¢;=cCn+ (Co—ch)cos?i (1)

where ¢, and ¢, are the cohesion strength in the horizontal and vertical directions, respectively. The
cohesion strengths may be termed as “principal cohesion strengths”. (Lo, 1965) For example, the
vertical cohesion strength, ¢, can be obtained by taking vertical soil samples at any position and being
investigated with the major principal stress applied in the same direction. The ratio of the principal
cohesion strength ¢,/ ¢, denoted by k, is assumed to be the same at all points in the medium. ¢;=c¢, =
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¢, or k=10 means an isotropic material. In Fig. 1 (a), the angle m is the angle between the failure
plane and the plane which is normal to the direction of the major principle cohesion strength kept at
an angle i with the vertical direction. This angle, according to Lo’s test (1965), is found to be
independent of the angle of rotation of the major principal stress.

II. GENERAL EXPRESSIONS

The geometrical relation L/r,, H/r, and N/r, in
Fig. 1 (a) can be expressed in the forms.
H

rizcosﬁa—cosﬁ,. exp[(6,—6,)tang ] —rﬂ— . (a; cotBi+a cotf) (2)
H . .

r—=sm0¢, exp[(6,—6,) tang]—sind, (3)
rﬂ—=cos¢ exp[(%+¢—ﬁo) tanqs]—sinﬁo—ri (4)

where a,, a,, D and N are defined in Fig. 1 (a). The rate of external work done by the region AA’ CB’
B can be obtained from the algebraic summation of W, —WZ—W3—W4 —Ws. Herein, W., Wz, Wa, V'V4
and VVS represent the rates of external work done by the soil weight in the region OAB’, OB’ B, OCB,
OA’ C and OAA'’ respectively.

These expressions are

5 1
p— 3 . _
Wi=yQr, [_3(1+9tan2¢) { (3tangcosb,+sinb,) exp [3 (6,—6,) tang]
—3tangcosb, —sinb, } ] (5)
=yQ 1,°G,
W=7y rosﬂ%sinﬁo _rL— {2 cosb, — L }
=7 1G: (6)
L

W3:y 1o [z—'ri {c03200+rL( —2coséb,) +siné, cotf (cosﬁo—rL)
o

o To 2
a,

_aH cotf, (cosb, —L—|- siné, cotf,) }]
2 To To

=y 1,°QG; (7)

W, = ¥ r,,%)%—zri [ (cos*x +cotBesinbucosby) exp [2(6,— 8,)tang]
o

+ ( D cotBosing, + -2 H sinehcotﬂz+2£cos€h+2 H cotB,cos6,)
T, 2 1, To 2 1
e D, aH 0D

exp [(6, 0,,)tan¢]+(ra) + 5 :cotﬁz(ro)]

=y 1,°QG, (8)
: s 1D . D

W=y 1,0 6r sing, [{2cosf,exp [(ﬁh—é’o)tan¢]+r—} exp [(6h—6,)tang]]

o o

=Y r030G5 (9 )
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Similarly, the rate of external work done by the inertia force on the soil weight can be found
simple summation by WS—W7—W5—W9—W.O - Herein, WG, W7, Ws, Wg and Wm represent the rates
of external wopk done by the inertia force due to sliding soil weight in regions OAB’, OB’B, OCB, OA’
C and OAA’, respectively.

These expressions are as follows

W,=K y r.'Q [m { (Btandsing, —cosfy) exp [3(6n— 6,)tang]
—3tangsing, +cosb,} ]

=K 7 1,*QGs (10)
V.V7=K—'y3r"3ﬂ {rL; siné,siné, }

=K y r.°Q, (1D
Wy=K 7 r,°Q [%% {sin00+—%'—(-rHT)} (cosb, +sinfpcosf — L )]

=K y r,’°QGs (12)
V.ngﬁyg—r"a(l [sinBxcosb, (sin00+—rHT)exp [2(6x—6o)tang ]

+exp [(8.—6,)tang] [sinﬁ,.ri(sin00+ri)—cos€,. {sir1¢9(,+(a2+1)ri
o o

o

+ (—aTZH—) 1] —rR {siné, + (a.+ l)ri—k (a:—H)’} —a,cotf, :{

{sinf, + (1 ——az)—rI_I—(sinﬂo-F—?—)]

=K y r,°QG, (13)

WIOZK Y I‘oaQ { 1 D

sin?6,exp [2(6.—6,)tang]}
31,

=K v 1,°QGyo (14)

The external rate of work due to surcharge boundary loads and its associated inertia force are
found to be
due to surcharge
L
p r.2Q{Lr, (cosﬁo—T) }=p ro,2Q f, (15)
o
due to inertia force of the surcharge

L
To

xKp r,2Q {—sinb,} =p r,°Q {, (16)

The total rates of internal energy dissipation along the discontinuous log-spiral failure surface AB
is found by multiplying the differential area rdé/cos¢ by c; times the discontinuity in velocity, Vcosé,
across the surface and integrating over the whole surface AB. Since the layered clays possess different
values of c;, the integration is therefore carried out into two parts.
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j;:h ci( Vcos ¢) crgseqﬁ = j;:h (ce)i rovoexp [2(6—8,) tan ¢] db

+ /;ah (c)urovoexp [2(6—0,) tan ¢] db (17)

The log-spiral angle, 8, and the anisotropic angle, i are related from the geometric configuration
shown in Figs. 1 (a)(b) as

sind.exp [fntane]=sinbrexp [fitand] (18)

Referring to equation (1) and the geometry of Fig. 1, (c;) , and (c;)i can be expressed as
in the region 6, and 6,

(ci)i= {1+(L;—k) cos?i} c{no+ 1;_;“ (sin fexp [(8— Go) tan ¢ ]—sin 8,)} (19)

7o

in the region 6, and 6,

1-%
k

Ycos?i}c{m + m;,—n—l-(sin fexp [6— 60) tan ¢]

(cn= {1+(

7o

—sin Gmexp [(8n— o) tan ¢1} (20)

where Kzz—", i=0+®, &=— (%+¢—m) and

v
n,, n, and n, are defined in Fig. 1 (c).
After integration and some simplifications, Eq. (17) reduces to

o df B
[ eiveos ) g =cnea (21)
in which
Q:QI+Q2+Q3 (22)
The functions Q,, Q, and Q; are
_ No 1-4 om
Q= exp (2 fotan ¢) ’ ¢+< k )’1 00
m Rl AYY
* exp (2 G,tan ¢) |¢+< k )’1 om (23)
_ 1—#n, I .
Q.= 1 & — ¢sin Goexp [Ootan ¢]
(—)—) exp (3 Gotan ¢)
To 1—k . . on
+ (—k——){p—/lsm o exp [fotan ¢]|0 (24)
Q= ¥ Mz "1 Ié—gllsin&mexp[ﬁmtandz]
(——) exp (3 fotan @)
To 1-k . ”
+ <—k—-) {o— Asin Onexp [6n tan ¢] , (25)
in which
3t in — 4
g= 4 af;f;'?anz = ) exp [3 Otan 4] (26)
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_ exp[20tan ¢]
b= =y 27

p= exp [36tang] 3tangsind—cosf tangsin3f —cos3d

2 Troang 0% {6 T tantg)
cosf3tanfsing b —sin2 { sinf+3tangcosf  sinf+tangcosdf |
2 (1+9tan’¢) 2 (1+9tan’g) 6 (1+tan’g) '
(28)
3 =8XP [26tang ] exp [26tang] | exp [26tang
2 4tang ‘ 2
- cos2® (tangcos26+sin28) _ sin2® (tangsin26—cos26) \
2 (1+tan%p) 2 (1+tan?g) (29)

By equating the total rates of external work, Eq. (5) to (16) to the total rate of internal energy
dissipation, Eq. (21), we obtain
Q+Q+Qs) —y 1o (Gi—Gy,—G3—G,—Gs) —pfs
¥ To (Ge—G7;—Gs—Gy—Gy) +xpfy
The function F (6,, 6,, r—) has a minimum value and, thus, indicates a least upper bound, when
o

K=F (6,, b, %>:° ( (30)

D . . -
6, 6r, and r—satlsfy the following conditions.
o

oK . 9K _ oK
20, =0 20, =0 and D)1, =0 (31)

Thus, the yield acceleration factor, K. is denoted as
K.=Min. F (6,, 64, D/r,) (32)

PROGRAM I
r -
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[II., Flow Chart

The flow chart of the computer is given in Fig. 3 In the following, a brief explanation of these
logical steps is given. These steps are summarized in the following sequence :
(1) Read input data from free format I, the read-in sequence and explanation of input Datas are
shown in the program listing.
(2) Before searching K. of local failure, check if horizontal inertia force can be imposed. If it is
possible, it means that the slope has already failed before imposing any seismic force.
(3) Compute K. for translational plane failure mechanism using OPT which is a package of FOR-
TRAN [V subroutine (Gabriele and Pagsdell 1976) and also implements the generalized reduced
gradient method for the solution of the constrained nonlinear programming problem.
Compute K. for the rotational log-spiral failure mechanism using OPT.
The critical value K. corresponding to the log-spiral mechanism is smaller than that of plane

o =
S

failure mechanism. However, a comparison between the two yield acceleration factors corre-

sponding to plane and log-spiral failure surface is still necessary.

Case 1 : Log-spiral failure surface passing below the toe for homogeneous and isotropic slopes.
Details of this are in Appendix C. Logical steps are of course identical to that described
above except the expressions used in the program OPT.

Case 2 : Log-spiral failure surface for nonhomogeneous and anisotropic slopes. The steps are
the same as above cases.

[V. NUMERICAL RESULTS

Here, as in nonhomogeneous and isotropic case, the numerical results of K, values are obtained
by the CDC 6600 and CDC 6500 digital computers. The optimization technique reported by Sigel (1978)
is used to minimize the function of Eq. (32) without calculating the derivatives. The results are

Table1 Comparison of Critical Height : H, for Table 2 Comparison of Critical Height : H, for
Anisotropic Soil with Constant Shear Anisotropic Soil with Shear Strength
Strength Increasing Linearly with Depth

Curved Failure Surface Curved Failure Surface

|Slope Angle Anisotropy Limit :1 | Limit . N N . P o

(Degree) Fa;:c: fqmcﬁgiz?‘ A[fo‘;lg;iial tit7°z°£ sl(gg;r::;;xe An;:::ggy é:i;ihri\.;nl m;sis.zf ratio of
8 k ¢ Circle* Log Spirali 1 / 2
1.0 95.75 110.57 0.870 [ o 50,00 0,97 0.920
0.9 - - - I 0.9 50.00 60.45 0.827
2 0.8 - - - 0.8 50.00 60.30 0.829
0.7 - - == 90 0.7 50.00 59.40 0.842
0.6 - - - 0.6 50.00 58.85 0.850
9.5 - - - 0.5 50.00 58.35 0.857
1.0 119.75 136.62 0.877 1.0 69.25 72.10 0.961
0.9 118.00 132.36 0.892 0.9 68.25 72.06 0.947
70 0.8 116.25 128.14 0.907 0.8 67.25 70.77 0.950
0.7 114.50 123.89 0.924 70 0.7 66.25 70.40 0.941
0.6 112.25 119.12 0.942 0.6 65.25 70.20 0.930
0.5 110.25 114.92 0.960 0.5 62.50 68.68 0.910
1.0 142.00 142.00 1.000 1.0 94.50 103.70 0.911
0.9 138.50 137.50 1.007 0.9 91.50 100.50 0.911
50 0.8 133.75 | 120.40 | 1.034 S0 0.8 89.00 98.00 | 0.908
.7 129.75 125.50 1.054 0.7 86.25 95.40 0.904
0.6 127.25 120.75 1.054 0.6 82.75 92.40 0.896
0.5 121.25 116.50 1.041 0.5 7925 89.50 0.886
1.0 137.50 135.50 1.015
*Lo (1965) 0.9 N . -
0.8 125.00 127.00 0.984
30 0.7 -— - -
0.6 - - .
0.5 104.50 114.00 0.917

*Lo (1965)
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Table3 Yield Acceleration Factor K. with con-
stant stability number N; and surcharge

P
Arsotropy p=0 p =120psf p=120pst
factor % 1:0 x2 0 22058
1.0 0.477 0.455 0.450
09 0.457 0.436 0.431
0.8 0.437 0.417 0.413
0.7 0.416 0.399 0.394
X3 0.396 0.380 0.376
05 0.377 0.381 0.357
Qdenstad_Model

K.c. tatrosy

55 0 B % 25 % 3B 0
m= (457 (4757 (307 (5257 (557 (575°) (607 (6257 (€57

@ (degree}

B=30°
H =30
7 320 Bt
p20
K20
az30

Fig.4 Variation K, anisotropy vs K., isotropy
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Table4 Anisotropic but Homogeneous Soil : with constant C,
(®=constant, & =p)
Taylor Model
1.0
Friction Yield Acceleration Factor: Kc
Angle Anisotropy|Slope
(degrees) Factor Angle (degrees) (degrees) (degrees) (degrees)
) k 8 30 S0 70 90
C-Anisotropy 1.3 0.285 0.282 0.280
type .2 0.270 0.268 0.266
! 0.25 0.253 0.252
0.0 -0 0.24 0.23 0.237
(m=45°) 0. 0.22 0.225 0.22:
0. 0.212 0.21 0.209
M-anisotropy 0. 0 . 198 0.1 0.195
type 0.6 .184 0.182 0.181
0.5 0.168 0.1 0.167
C-Anisotropy 1.3 0.356 0.354 0.352
type 1.2 0.342 0.339 0.337
L. 1 0.327 0.325 0.32
5.0 1.0 0.312 0.310 0.30
(m=47.5°) 0. 0.297 0.296 0.294
Q. 0.283 0.281 .2
M-Anisotropy 0. 0.2 Q.2 .2
type 9.6 0.253 0.252 .25
0.5 0.239 0.238 2237
C-Anisotropy 1.3 0.454 0.451 0.448
type -2 0.43 0.435 0.434
.1 0.422 .420 0.41
.0 0.407 . 405 0.403
10.0 0.9 0.391 .38 0.38
(m=50°) 0.8 . 375 0.374 0.373
M-Anisotropy 0.7 2 0.35 Q.358 0. 35
type 0.6 6 . 344 Q.343 0.342
0.5 E 0.32 0.32 0.326
C-Anisotropy 1.3 9 0.729 0.725 0.721
type 1.2 17 .707 .704 0.701
L. 1 H . .683 0.680
.0 3 0.66 0.662 0.660
20.0 . 1 . 645 0.641 0.
(m=60°) 9 0.623 0.621 Q.
M-Anisotropy 7 7 0.602 0.600 0.59
type 0.6 .585 .58 0.579 0.57
0.5 562 0.560 .558 0.55
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Table5 Anisotropic and Nonhomogeneous Soil :
C, Increasing Linearly with Depth
Gibson & Morgenstern
Model
Yield Accelaration Factor: Kc
Slope Slope Slope Slope
Friction Anisotropy Angle Angle aAngle 2Angle
Angle Factor (degree) (degree) (degree) (degree)
(degree)
] k 8: 30 50 70 90
1.0 0.23 0.227 0.226 0.224
0.9 0.21 213 .211 o 2
0.8 .20 o .197 0.196
0.0 . .18 . 184 .183 . 182
(m=45°) .6 0.172 .1 .169 .1
0.5 .157 0.155 . 155 . 154
1.0 0.303 0.300 0.299 0.2
0. 0.28 .28 0.284 .2
0. .27 . 0.270 .2
5.0 0. .25 0.25 0.255 . 255
(m=47.5°) 0.6 .24 . 242 0.241 .24
0.5 .22 .22 0.227 0.226 1.0
1.0 0.399 0.396 0. 394 0.393 l"_‘
0. 0.383 0.380 .37 .37
10.0 . 0.367 . 365 . 364 . 363
(m=50°) 0. .350 . 348 . 34 . 34
0.6 . 344 J.333 . 332 . 332
0.5 0.318 .31 0, 3 .31
1.0 0.659 0.653 0.650 0.64
0.8 -- . 632 .629 .62
20.0 0. -- .611 0. 0.
(m=60°) [ -- 0.590 0.5 0.5 1.0
0.6 == .569 0.56 0.567 e
0.5 - .548 0.54 0.547 F-——-
Table 6 Anisotropic and Nonhomogeneous Soil : C, Increasing 1.5
with Depth (®=constant, @ +8) o4
Odenstad Model

Yield Acceleration Factor: Kc

Friction Slope Slope Slope Slope

Angle Anisotropy Angle Angle Angle Angle
(degrees) Factor (degrees) (degrees) (degrees) (degrees)

) k 8: 30 50 70 90

1.0 0.32 0.323 0.320 0.318

0. o3 0.305 0.302 .300

0.0 0. . . 287 0.2 . 282

(m=45°) 0.7 0.2 .269 0.26 0. 2¢€

0.6 0.255 .250 0.2 0.2

0.5 0.237 .232 0.230 0.22

1.0 0.395 0.389 0.386 0.383

0. 0.376 0.370 . 367 0.365

5.0 .8 0.356 0.351 . 349 0.347

(m=47.5°) . 0.3: . 332 .330 0.328

0.6 0.318 0.314 0.311 0.310

0.5 0.299 0.295 0.293 - 292

1.0 0.486 0.480 0.477 0.474

0. 0.465 0.460 . 457 0.455

10.0 0. 0.445 0. 0.437 0.435

(m=50°) 0.7 . 424 0.41 0.416 .415

0.6 . 4 . 0.396 . 395

0.5 0.382 . 0.377 .376

1.0 0.741 0.732 0.727 0.724

0.8 0.71 0.70 0.70] 0.69

20.0 0. 0. 0.67 . 67¢ - 672

(m=60°) 0.7 0.65 . 652 . 64 .64

0.6 0.63 . 625 .622 .620

0.5 0. 0.598 0.595 0.593
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Table 7 Anisotropic and Nonhomogeneous Soil : C, Increasing
Linearly with Depth (®=constant, « =)

Reddy & Srinivason Model

Yield Acceleration Factor: Kc
Friction Slope S1ope SIope S1ope
Angle Anisotropy Angle Angle Angle Angle
(degrees) Factor (degrees) (degrees) (degrees) (degrees)

] k 8: 0 5 70 90
1.0 0.30 0.2 0.295 0.29

0. 0.2 0.281 0.27 0.27

0.0 0. 0.2 0.26: 0.2 0.25
(m=45°) 0. 0.250 0.245 0.243 0.242
0.6 0.232 0.228 0.226 0.225

0.5 0.213 0.210 0.208 0.207

1.0 0.372 0.368 0.364 0.362

0.9 0.354 0.350 0.347 0.345

5.0 0.8 0.335 0.3 0.3 0.327
(m=47,5°) 0.7 0.317 0.3 0.311 0.310
0.6 0.298 0.2 0.293 0.292

0.5 0.280 0.2 0.2 0.275

1.0 0.467 0.461 0.459 0.45

0.6 0.447 0.442 0.440 0.43

10.0 0. 0.42 0.42: 0.421 0.41
(m=50°) 0. . 4 0.404 0.402 0.401
0.6 0.390 0.385 0.38 0.382

0.5 0.369 0.365 0.364 0.363

1.0 0.739 0.730 0.725 0.722

0.8 0.712 . 704 0.700 0.697

20.0 0. 0. .67 0.674 0.672
(m=60°) 0. 0.65 . 652 0.64 0.647
0.6 .63 .62 0.624 0.622

0.5 0.605 0.600 0.598 0.597

summarized in Tables 1 to 7 and Fig. 4 Some of the solutions are compared in Tables 1 and 2 with
the existing limit equilibrium solutions.

(1)

Table 1 shows a comparison of critical heights obtained by the limit equilibrium method and by
the present limit analysis for anisotropic slope with constant shear strength (Lo, 1965). Here, as
in Lo’s work, the value of m is taken to be 55° and the values of friction angle, ¢ and acceleration
K. are put nearly equal to zero so that the statical log-spiral failure surface reduces to the circular
one. Generally speaking, both results are in good agreement.

Table 2 compares the cases of anisotorpic slope with shear strength increasing linearly with
depth. (Fig. 2, b). In this way, the critical height H, can be compared with those obtained
previously by Lo (1965) using the limit equilibrium method. A good agreement is again observed.
Figure 4 illustrates graphically the K. values of anisotropy case normalized by the corresponding
K. values of isotropy case with C-anisotropy type (or k>1) and M-anisotropy type (or K<1)(Lo,
1965).

Some typical results for the yield acceleration K. corresponding to the general case of
nonhomogeneous and anisotropic soil are tabulated in Tables 4 to 7. These include (see Fig. 2)
Table 3 —Yield Acceleration Factor k. with constant Stability Number N and surcharge p
Table 4 —Taylor model (1948)

Table 5 —Gibson and Morgenstern model (1962)
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Table 6 —Odenstad model (1963)

Table 7 —Reddy and Srinivason model (1967)
where the angle m between the failure plane and major principal plane as shown in Fig. 1 (a) is taken
to be %4—%.

V. Summary and Conclusions

The purpose of this study is to establish a practical approach to obtain effectively the slope
stability solutions under earthquake loading condition. To this end, the upper bound technique of limit
analysis is applied to obtain the yield acceleration factor for two cases of clay slopes : (1) homo-
geneous but anisotropic slopes (2) nonhomogeneous and anisotropic slopes. For practical purpose, we
adopt the pseudo-static approach and not a dynamic analysis. The formulation of the problem is seen
to be rather straightforward and simple. The numerical results for the special cases are found to be
in good agreement with the existing limit equilibrium solutions.

It can therefore be concluded that the upper bound technique of limit analysis provides a
convenient and effective method for the analysis for seismic stability of earth slopes. In a subsequent
work we will report on the assessment and evaluation of seismic displacements considering the
potential of liquefaction effects for anisotropic, non-homogeneous clay. slopes. These studies are
considered to be necessary for a better definition of the failure of slopes under earthquake loading
conditions.
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