Complements for On the convergence of Stochastic Integrals

T. SHINTANI* (Received January 31, 1983)

1) In the proof of theorem (p. 172), of course, it may be supposed that an L^2 martingale f is an L^{∞} martingale. In fact, by the similar method to lemma 1 (p. 171), for L^p martingale f and $\varepsilon > 0$ there is a uniformly bounded L^{∞} martingale $f^{(\varepsilon)}$ such that $||f(s) - f^{(\varepsilon)}(s)||_p < \varepsilon (0 \ll s \ll t)$ when $p \ge 1$.

Let
$$\theta_m^{(\varepsilon)} := \sum_{\kappa} v(t_{m,k}) \cdot d^{(\varepsilon)}(t_{m,k}), \ d^{(\varepsilon)}(t_{m,k}) := f^{(\varepsilon)}(t_{m,k+1}) - f^{(\varepsilon)}(t_{m,k}).$$

The proof of theorem shows that when $m \to \infty$ $\theta_m^{(\varepsilon)}$ converges in L^2 .

Here recall that $\theta_m := \sum_{\kappa} v(t_{m,k}) \cdot d(t_{m,k}), d(t_{m,k}) := f(t_{m,k+1}) - f(t_{m,k}).$

Let
$$p = 2$$
 then

$$\lim_{m,n\to\infty} \|\theta_m - \theta_n\|_2 \leq \lim_{m\to\infty} 2 \cdot \|\theta_m - \theta_m^{(\epsilon)}\|_2 + \lim_{m,n\to\infty} \|\theta_m^{(\epsilon)} - \theta_n^{(\epsilon)}\|_2$$

$$= 2 \cdot \lim_{m\to\infty} \|\theta_m - \theta_m^{(\epsilon)}\|_2 + 0$$

$$\leq 2 \cdot \lim_{m\to\infty} c \cdot \|\sum_K [d(t_{m,k}) - d^{(\epsilon)}(t_{m,k})]\|_2 \qquad (c > 0 \text{ is constant})$$

$$= 2 \cdot c \cdot \|f(t) - f^{(\epsilon)}(t)\|_2$$

$$\leq 2 \cdot c \cdot \epsilon \quad \text{for all } \epsilon > 0.$$

2) Let 1 then by the same method to above 1)

$$\lim_{m,n\to\infty} \|\theta_m-\theta_n\|_p < 2 c \cdot \varepsilon \quad \text{for } \underline{\text{all}} \quad \varepsilon > 0 \quad (c>0 \text{ is constant}).$$

3) Let p > 2.

$$E[\mid \theta_m \mid^p] \ll c_p \cdot E[\mid f \mid^p] < \infty, \quad E[\mid \theta_m^{(\varepsilon)} \mid^p] \ll c_p' \cdot E[\mid f^{(\varepsilon)} \mid^p] \ll K$$

 $(c_P > 0, c_P' > 0)$ are constant. K > 0 is also constant since $f^{(\epsilon)}$ is uniformly bounded.) As $\theta_m^{(\epsilon)}$ converges in L^2 , $\theta_m^{(\epsilon)}$ converges in L^1 .

Since
$$E^{1/2} [\| \theta_m^{(\varepsilon)} - \theta_n^{(\varepsilon)} \|^{2\rho-1}] = (\| \theta_m^{(\varepsilon)} - \theta_n^{(\varepsilon)} \|_{2\rho-1})^{2\rho-1}/2$$

$$\leq (\| \theta_m^{(\varepsilon)} \|_{2\rho-1} + \| \theta_n^{(\varepsilon)} \|_{2\rho-1})^{2\rho-1}/2 \qquad (2p-1>1)$$

$$\leq (2 \cdot {}^{2\rho-1} \sqrt{C_{2\rho-1}'} \cdot \| f^{(\varepsilon)} \|_{2\rho-1})^{2\rho-1}/2$$

$$\leq K' \quad (K'>0 \text{ is constant}),$$

$$E[\| \theta_m^{(\varepsilon)} - \theta_n^{(\varepsilon)} \|^p] = E[\| \theta_m^{(\varepsilon)} - \theta_n^{(\varepsilon)} \|^{1/2} \cdot \| \theta_m^{(\varepsilon)} - \theta_n^{(\varepsilon)} \|^{p-\frac{1}{2}}]$$

$$\leq E^{1/2} [\| \theta_m^{(\varepsilon)} - \theta_n^{(\varepsilon)} \|] \cdot E^{1/2} [\| \theta_m^{(\varepsilon)} - \theta_n^{(\varepsilon)} \|^{2\rho-1}]$$

^{*} 助教授 一般教科数学

$$\ll K' \cdot E^{1/2} [|\theta_m^{(\varepsilon)} - \theta_n^{(\varepsilon)}|] \longrightarrow 0$$
 as $m, n \to \infty$

So, by the same method to 1), $\lim_{mn\to\infty} \|\theta_m-\theta_n\|_p=0$.

4) Let p=1. From the proof for p=2 (p. 172), $\theta_m^{(\varepsilon)}$ converges a. e. Let $\|f-f^{(\varepsilon)}\|_1<\varepsilon$.

$$P(\lim_{m,n\to\infty}\sup |\theta_m - \theta_n| > 3 \varepsilon)$$

REFERENCE

T. Shintani, On the convergence of Stochastic Integrals, Memoires of Tomakomai Technical College 16 (1981), 171-172.