A complement for On the convergence of Stochastic Integrals. II

T. SHINTANI* (Received February 3, 1983)

In the proof of the convergence theorem ([4], p. 129), of course, it may be supposed, as [3], that L^2 martingale f is an L^{∞} martingale. In fact, by the similar method to Lemma 1, for L^2 martingale f and $\varepsilon > 0$ there is an L^{∞} martingale g such that $||f(s) - g(s)||_2 < \varepsilon$ $(0 \le s \le t)$. The proof of the convergence theorem shows that when $m \to \infty$

$$\widetilde{\theta}_m := \sum_K v(\xi_{m,k}) \cdot [g(t_{m,k+1}) - g(t_{m,k})]$$
converges in L^2 . Here, recall $\theta_m := \sum_K v(\xi_{m,k}) \cdot [f(t_{m,k+1}) - f(t_{m,k})]$.
$$\lim_{m,n\to\infty} \|\theta_m - \theta_n\|_2 \leqslant 2 \cdot \lim_{m\to\infty} \|\theta_m - \widetilde{\theta}_m\|_2 + \lim_{m,n\to\infty} \|\widetilde{\theta}_m - \widetilde{\theta}_n\|_2$$

$$= 2 \cdot \lim_{m\to\infty} \|\theta_m - \widetilde{\theta}_m\|_2 + 0$$
(from the proof of convergence theorem [4], p. 129)
$$\leqslant 2c \cdot \lim_{m\to\infty} \|\sum_K [\{f(t_{m,k+1}) - f(t_{m,k})\} - \{g(t_{m,k+1}) - g(t_{m,k})\}]\|_2$$
(by an inequality of Burkholder [1], p. 858 and [2], p. 592)
$$= 2c \cdot \lim_{m\to\infty} \|f(t) - g(t)\|_2 \qquad (c > 0 \text{ is constant)}$$

$$\leqslant 2c \cdot \varepsilon \qquad \text{for all } \varepsilon > 0.$$

The convergence theorem was established.

REFERENCES

^{*}助教授 一般教科数学

Remark on the 1 st line of ([1], p. 129)

T. SHINTANI

Remark. From the proof of lemma 2 ([1], p. 128 and [2], p. 189), for a stochastic process $\{v(t)\}$, there is a sequence of continuous process $\{v_n(t)\}$ such that $\lim_{n\to\infty}\int_o^t |v_n(t)-v(t)|^p dt = 0$ $(p \ge 1)$ for almost all $\omega \in \mathcal{Q}$. This implies that if v(t) is measurable then, for every $s \in [0, t], v_n(t)$ is measurable a_s (define $v_n(t)$ by $v_n(t, \omega) \cdot I_{[as_n]}(t)(s_n = s, s_{n+1} \uparrow \infty)$ and so that there is a sequence of such measurable functions $\{v_n(t)\}$ satisfying $v_n(t) \to v(t)$ for almost all $\omega \in \mathcal{Q}$ as $n \to \infty$. So "if $E(X/a_s) = E(Y/a_s)$ then $E(v(t) \cdot X/a_s) = E(v(t) \cdot Y/a_s)$ " In fact, since v(t) is measurable a_s $(s \in [0, t])$,

$$E(v_n(t) \cdot X/a_s) = v_n(t) \cdot E(X/a_s) = v_n(t) \cdot E(Y/a_s) = E(v_n(t) \cdot Y/a_s)$$

and $v_n(t) \cdot X \rightarrow v(t) \cdot X$ a.e., $v_n(t) \cdot Y \rightarrow v(t) \cdot Y$ a.e. as $n \rightarrow \infty$ so, by Lebesgue's convergence theorem,

$$E(v(t)\cdot X/a_s) = \lim_{n\to\infty} E(v_n(t)\cdot X/a_s) = \lim_{n\to\infty} E(v_n(t)\cdot Y/a_s) = E(v(t)\cdot Y/a_s)$$

as the desired result.

So 1): from
$$E(d(t_{m,k})^2/a_{t_{m,k}}] = E[\langle f \rangle_{t_{m,k+1}} - \langle f \rangle_{t_{m,k}}/a_{t_{m,k}}]$$
 it follows that

$$E[\{v(\xi_{m,k}) - v^{(\epsilon)}(\xi_{m,k})\}^2 \cdot d(t_{m,k})^2 / a_{t_{m,k}}] = E[\{v(\xi_{m,k}) - v^{(\epsilon)}(\xi_{m,k})\}^2 \cdot (\langle f \rangle_{t_{m,k+1}} - \langle f \rangle_{t_{m,k}}) / a_{t_{m,k}}]$$

and 2): from $E[d(t_{m,k}) \cdot d(t_{m,l})/a_{t_{m,l}}] = 0$ (k > l) it follows that

$$E[v(\xi_{m,k}) \cdot v(\xi_{m,l}) \cdot d(t_{m,k}) \cdot d(t_{m,l}) / a_{t_{m,l}}] = 0 \quad (k > l).$$

Therefore

$$\lim_{m \to \infty} E[|\theta_{m} - \theta_{m}^{(\epsilon)}|^{2}] \\
= \lim_{m \to \infty} \left[\sum_{K} E(E[\{v(\xi_{m,k}) - v^{(\epsilon)}(\xi_{m,k})\}^{2} \cdot d(t_{m,k})^{2} / a_{t_{m,k}}]) \\
+ 2 \cdot \sum_{k>t} E(E[\{v(\xi_{m,k}) - v^{(\epsilon)}(\xi_{m,k})\} \{v(\xi_{m,t}) - v^{(\epsilon)}(\xi_{m,t})\} \cdot d(t_{m,t}) \cdot d(t_{m,t}) / a_{t_{m,t}}])] \\
= \lim_{m \to \infty} \left[\sum_{K} E(E[\{v(\xi_{m,k}) - v^{(\epsilon)}(\xi_{m,k})\}^{2} \cdot (\langle f \rangle_{t_{m,k+1}} - \langle f \rangle_{t_{m,k}}) / a_{t_{m,k}}])] \\
= \lim_{m \to \infty} E[\sum_{K} \{v(\xi_{m,k}) - v^{(\epsilon)}(\xi_{m,k})\}^{2} \cdot (\langle f \rangle_{t_{m,k+1}} - \langle f \rangle_{t_{m,k}})] \\
= E[\int_{0}^{t} |v(s) - v^{(\epsilon)}(s)|^{2} d\langle f \rangle_{s}] < \epsilon^{2}$$

REFERENCES

- 1. T. Shintani, On the convergence of Stochastic integrals, II, Memoires of the Tomakomai Technical College (ISSN-0388-6131, CODEN:TKSKDU), 17(1982), 127-130.
- 3. S. Watanabe, Stochastic Differential Equations (in Japanese), Sangyôtosho, Japan, 1975.

Added in proof. From the proof of Convergence Theorem ([1], pp. 128-129) for p=2 it holds that $\int_{o}^{t} v(s) dB(s) = \text{It\^{o}}$ integral (=a martingale) so that the weak L^{1} -inequality of ([4], p. 858) holds without "predictable" as follows.

Let $v=(v_1,\ v_2,\cdots)$ be a stochastic process (i. e. a sequence of measurable functions), let $f=(f_1,\ f_2,\cdots)$ be a martingale with difference sequence $d=(d_1,d_2,\cdots)$ and let $g=(g_1,g_2,\cdots)$, defined by $g_n=\sum\limits_{k=1}^n v_k\cdot d_k$, be the transform of the martingale f under v. The L^1 -norm of f is $\|f\|_1=\sup_n\|f_n\|_1$ and the maximal function of g is defined by $g^*(\omega)=\sup_n\|g_n(\omega)\|$. Then $\lambda\cdot P(g^*>\lambda)\ll c\cdot\|f\|_1,\ \lambda>0,\ (c>0)$ is constant) as [4] so that

$$\|\sum_{K=1}^n v_k \cdot d_k\|_p \ll c_p \cdot \|\sum_{K=1}^n d_k\|_p \qquad (c_p > 0 \text{ is constant}), \ 1$$

- 4. D. L. Burkholder, A sharp inequality for martingale transforms, Ann. Probability 7(1979), 858-863.

Let

```
(\mathcal{Q}, a, P) : a probability space \{a_t, 0 < t < 1\} : an increasing family of sub-\sigma-fields of a \in \{f(t), 0 < t < 1\}: an L^p martingale adapted to \{a_t, 0 < t < 1\}(t > 1) \in \{v(t), 0 < t < 1\}: a stochastic process with \sup_t |v(t)| < \infty a. e. \Delta = \{0 = t_0 < t_1 < \dots < 1\}: any partition of [0, 1], |\Delta| = \max_k (t_{k+1} - t_k), \xi_k \in [t_k, t_{k+1}].
```

Then we have the followings:

- 1) For $\{f(t), 0 \le t \le 1\}$ and $\varepsilon > 0$ there is a uniformly bounded L^{∞} martingale $\{f^{(\varepsilon)}(t), 0 \le t \le 1\}$ such that $||f(t) f^{(\varepsilon)}(t)||_p < \varepsilon$ $(p \ge 1)$,
- 2) Let $\{A_t, 0 \leqslant t \leqslant 1\}$ be an increasing continuous process. For $\{v(t), 0 \leqslant t \leqslant 1\}$ and $\varepsilon > 0$ there is a continuous stochastic process $\{v^{(\varepsilon)}(t), 0 \leqslant t \leqslant 1\}$ such that $E[\int_0^1 |v(t) v^{(\varepsilon)}(t)|^p dA_t] < \varepsilon$ $(p \gg 1)$,
- 3) Doob-Meyer decomposition (p = 2),
- 4) the weak L^1 -inequality for martingale transform (without predicatable) (p = 1),
- 5) L^p -inequality (without predictable):

$$\|\sum_{n} v(\xi_{n}) \cdot [f(t_{n+1}) - f(t_{n})]\|_{p} \leqslant c_{p} \cdot \|\sum_{n} [f(t_{n+1}) - f(t_{n})]\|_{p} \qquad (p > 1).$$

Here the convergence problem is solved, i. e., the following convergence theorem is established:

THEOREM $\lim_{|d|\to 0} \sum_{n} v(\xi_n) \cdot [f(t_{n+1}) - f(t_n)]$ exists in the convergence in L^p and a. e. for p>1 and it exists in almost everywhere convergence for p=1. The limit defines a stochastic integral that is denoted by $\int_0^1 v(t) \, df(t)$.

