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Abstract

In this paper, an attempt is made to evaluate the yield acceleration and the corresponding failure
mechanism in a slope by the upper bound techniques of pseudo-static limit analysis in addition to the
privious paper. The term “anisotropic” means anisotropic cohesion strength and the term “nonhomo-
geneous” means that the cohesion strength linealy varys in the direction of depth.

The method of limit analysis is derived from the assumption that soil deformation obeys the flow
rule associated with the Coulomb yield condition and volume increases as a plastic shearing deforma-
tion takes place. Then, a soil mass slides as a rigid body and its motion occurs with an angle ¢
between the velocity vector and the discontinuous slip surface.

Thus, obtained optimize solution by “reduced gradient method” and/or by “modified powell’s
method” are in good agreement. Some results are compared with the ones calculated previously by
several investigators. They are also in good agreement.

1. Introduction

During earthquakes, ground movements can induce large inertia forces in slopes. As a result, the
inertia forces moving away from the slope tend to reduce the stability of the slope. Once the inertia
forces exceed the limit of the soil resistance, slope failures occur.

While the limit equilibrium method has been widely used for solving soil stability problems for
more than 200 years, the application of the upper bound limit analysis technique, which is originally
proposed for metals, in soil mechanics is a recent one.

In this study, we are concerned with the calculation of the critical or yield horizontal inertia force
corresponding to the yield acceleration factor K., at which a condition of incipient slope movement
is possible along the potential sliding surface. The critical mode of failure depends on the properties
of soil, slope angle, magnitude of inertia force, surcharge, changes of cohesion strength and heigth of
slope etc.. And the failure occurance is found from the evaluation of the safety factor of slopes which
is denoted by K. ; the factor of yield acceleration during earthquakes.

In this method, the effect of an earthquake on a potential sliding mass are represented by an
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equivalent static horizontal force defined as the product of a seismic coefficient factor K, and the
weight of the potential sliding mass.
Specifically, the plastic limit theorems of the limit analysis are based on the following four basic
assumption.
(1) Changes in geometry of the plastic medium are negligible.
(2) The material is perfectly plastic and obeys the Mohr-Coulomb yield criterion for soils.
(3) The plastic strain rate is normal to the yield surface or, the Mohr-Coulomb failure envelope to
which the stress rate is tangential.
(4) The direction of the principal strain rate are in compliance with those of the principal stress axes.
Also, in this study, no consideration is given to the effects of vertical motion induced by the
earthquake.

II. Theoretical Expression

In this paper, the computation of the yield acceleration factor K. by the upper bound technique
of limit analysis for nonhomogeneous, anisotropic soils is based on the case of log-spiral failure
mechanism passing below the toe (Fig. 1, a).

The stability evaluation of a slope subjected to earthquake loads is based on the following
conditions :

(1) Plane strain condition

2) Upper bound technique of limit analysis

3) Pseudo-static earthquake loading

4) Uniform horizontal distribution of lateral acceleration

5) Mohr-Coulomb criterion for failure with variable ¢ but constant ¢.

Upper bound limit analysis solutions of earthquake-induced failures of slopes and retaining
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structures corresponding to a homogeneous isotropic soil are reported elsewhere
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Fig. 1 : A log-spiral failure mechanism for a general slope
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Herein, the term “Nonhomogeneous soil” means only the cohesion strength, ¢ which is assumed
to vary linearly with depth (Fig. 1, ¢). Figure 2 summarizes diagrammatically some of the simple
cutting in normally consolidated clays with several forms of cohesion strength distribution being
considered previously by several investigators®!®!V14,

The term “anisotropic soil” implies here the variation of the cohesion strength, ¢, with direction
at a particular point. The anisotropy with respect to cohesion strength, ¢, of the soil has been studied
by several investigators™®'V, It is found that the variation of cohesion strength, ¢, with direction
approximates to the curve shown in Fig. 1, b. In this paper, the variation of the apparent friction
angle is not considered with respect to either the nonhomogeneity or the anisotropy. In the following
we assume that the cohesion strength c¢;, with its major principal stress inclined at an angle i with the
vertical direction, is given by

¢ci=cn + (cy —cn) cos?i (1)

where ¢, and ¢, are the cohesion strength in the horizontal and vertical directions, respectively. The
cohesion strengths may be termed as “principal cohesion strengths®”.

For example, the vertical cohesion strength, ¢, can be obtained by taking vertical soil samples at
any position and being investigated with the major principal stress applied in the same direction. The
ratio of the principal cohesion strength c./c, denoted by k, is assumed to be the same at all points in
the medium. ¢; =¢, =¢, or k=1.0 means an isotropic material. In Fig. 1, a, the angle m is the angle
between the failure plane and plane which is normal to the direction of the major principle cohesion
strength kept at an angle 7 with the vertical direction. This angle, according to Lo’s test (1965)?, is
found to be independent of the angle of rotation of the major principal stress.

The geometrical relation L/7#,, H/7, and N/7, in Fig. 1, a can be shown in the following forms
from (2) to (4).

The rate of external work done by the reglon AA’ CBB’ can be obtained from the algebraic
summation of VK Wz Wa W,, Ws Herein, Wl, Wz, W3, W4 and Ws represent the rates of external
work done by the soil weight in the region OAB, OB’B, OCB, OA’C and OAA’ respectively.

Similarly, the rate of external work done by force on the sml weight can be found simple
summation by WG W, Ws W9 W,o Herein, Ws, W,, Wa, Wg and Wlo represent the rates of external
work done by the inertia force due to sliding soil weight in regions OAB’, OBB’, OCB, OA’C and OAA’,
respectively.

These expressions are as follows from (5) to (14).

rL=cos«90—cos«9,, exp[(Gn— 0a)tan¢]——ll? ——EI (a; cosB1+as cosfBa) (2)
H_ . .

-r——smﬁ;. exp[(6r— bo)tang] —sinb, (3)
[

N .

r—a=cos¢ exp[(%+¢—Ho)tanqS]—smﬁo—% (4)

where a;, a,, D and N are defined in Fig. 1,a.

< s 1 . _ _ o
Wi=7Q 4 [——3(1+9tan2¢) {(3tangcosBn+sinBn)exp[3(8,— Go)tang] — 3tangcosb, smﬁa}]

=7215G, (5)
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Wz =y ré.Q%sin 00%0 {2cos«90 — rL}

o

=r1802G, (6)

3 T, {cosz<90+—r-—(rl‘—o—Zcosﬁ,,)—Fsinﬁo cot,b’l(cos&a—%o—)

V.Va=rré‘.Q[ﬂ—I_—I L
[

_% %cotBI(COSeo_rLo-i-Sineo COtB')H

_ 3 .
_7r0QGd (7)

azﬂ

o o
W, )/ro.Q3 T

[(0052 6+ cot B2 sinfy, cosfn)exp[2(8,— G,)tand]

az

+ <r2cot,82 sin@n+-22 ﬂsinﬁh cot232+2r2cosﬁh+ 5
[ o

H
2 T, T cotf: cosfh)

-exp[(6n— Go)tand] + (—%)2 +322— %Cot&(%)]
=713RG4 (8)

Ws=7 ro3.Q—(15- rgsinﬁh[{ZcosHh expl(6,— Bo)tang] +r2}exp[(0;,— Ga)tangb]]
o o

=7150Gs (9)

WszK y ro39[m{(3tan¢ sin@,—cosfn)exp[3(8,— O,)tand]

—3tan¢ sin €o+cosﬁo}]
=K 7 182Gs (10)

. 3
W.= w{%sinﬁo sinﬁa}

=K 7 r#2G; (11)

H

W3=K y er[—ag—'— r—o{sinc’?ﬁ-%(%)} (cos¢90+sin00 cosﬂl—r—LO)]

=K 7 r82Gs (12)

v _Kryrgf

W, [sin@h cosﬁh(sinﬁo-i- H >exp[2(t9;.~ Go)tang]

3 To
+expl(Gn— 0o)tan¢][sin6hr%<sinﬁo+%> —cos@h{<sin8¢,+(a2 + 1)%)

-(sin00+rﬂo)+—1—<&>2}]— D {(sim%+(az+ 1)%)(Sinﬁo+ %)+%(¢)2}

2\ 1o To ro

- agcotﬁzrﬂo {sin@a + (1 —%) %}(sin 00+B—)]

o To
=K 712G, (13)

W10=K Y r,?.Q{% r%sin2 0r expl2(6,— Ho)tan¢]}

=K 712G (14)
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The external rate of work due to surcharge boundary loads and its associated inertia force are
found to be as follows.

prgzg{%o(cosﬁo—z%o>}=p réf fo (15)

xKp roz.Q{rLsiné’a}=p réfQ fq (16)

Where xK is the yield acceleration factor corresponding to the surcharge load P whose magnitude
can be related to the yield acceleration factor of the sliding soil weight, K, through the coefficient, x.
The value of x may be taken any value from zero representing the inertia response of surcharge load
to the earthquake force.

The total rates of internal energy dissipation along the discontinuous log-spiral failure surface
AB’is found by multiplying the differential area rdé/cos¢ by c; times the discontinuity in velocity,
Vcosg, across the surface and integrating over the whole surface AB’. Since the layered clays possess
different values of c,, the integration is therefore carried out into two parts.

On 6m
/;0 ci(Vcosg) czizﬁ =f00 (ci)irovoexp[2(8 — G,)tand]
On
+ [*(courovoexpl2(6— Go)tangldg (17
om
(c:); and (c;); can be expressed as (18) and (19).
(cf)1={l +( 1-k )coszi}c{no+ lﬁn" (sind exp[(8— ﬁo)tanqﬁ]—sinﬁo)} (18)
To
(c:)n={l +< lik )coszi}c{m + nz&nl (sinf exp[(8 — 8,)tang] — sinbn exp[(Gn— Bo)tan¢]} (19)
To
where k=(C:—", i=0+0, (D=—<%+¢—m> and n,, n; and n, are defined in Fig. 1,c. (20)

After integration and some simplifications, Eq. (17) reduces to as follow.

/:hci(Vcos:ﬁ) clfsiﬁ =crd2Q (21)
in which
Q=Q:+Q:+Q: (22)

The functions Q,, Q. and Q3 are shown as functions of 4,, 8, and K.
Also, Q;, Q. and Q; include functions &, ¢, p and A which are expressed as function of Q, and Q,,,
too x (see rsference, 15).

The log-spiral angle (6,) and the anisotropic angle (i) are related from the geometric configuration
shown in Figs. l,a,b.

sinfy exp [Ontand]=sinb, exp [Gutand] (23)

By equating the total rates of external work, Eq. (5) to (16) to the total rate of internal energy
dissipation, Eq. (21), we obtain.

_ D\_ c(@+Q2+Qs) =7 1o(G1—G2—G3—G4—Gs) —pf»p
K F<6o‘ O r) 7’I‘o(Gs—G7—Gs—G9—G10)+Xqu (24)

o
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The function F (00, O, %) has a minimum value and, thus, indicates a least upper bound, when
o

6o, 6r, and rg satisfy the following conditions.
o

oF _ . oF _ oF _
390—0, 26, =0 and 8D/ro—0 (25)

Thus, the yield acceleration factor, K. is denoted as

Kce=Min. F(8,, 6n, D/ro) (26)

III. Numerical Results and Summary

Computer programs were developed at Purdue University, Hokkaido University and Muroran
Institute of Technology. The program includes three parts (1) a main program, (2) a function
subprogram which defines the objective function and can calculate the minimum acceleration factor,
and (3) a subroutine subprogram which decides the constraints. The main program serves two
purposes, (1) initialization of program parameters and (2) preparation of calling subroutine OPT,
OPTM and SUMT which are packages of subroutine performing the generalized reduced gradient
method and/or modified gradient method for the solution of a constraint and/or a unconstraint
nonlinear programming problem. To submit a problem, the user only needs to supply the input data
defining soil properties and geometrical relations of slope. The objective function also needs con-
strains which have already been furnished details of the program including its listings are given

Kc
a B ¢ H
1.0 0° 30° 0° 6.9
0.51 x based
Ns (l! ' ¢ ' é / 'l?; * toe
0o 00 o '/'ﬂ_ == —
//' /' e 0 1 10 100 1000
8 + SR L/H
, “
6.7 S ,/j/' / Fig. 3: Relationship between K. and L/H
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Fig. 4 : Relationship between K. and L/H
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Kc Kc
T11.5
0.6 a ¢ Ns ¢=40°
0.5 0° 20° 6.667 g:goo Through toe 'j":'
xK=0 !
0.4 1.0
0.3 Below Toe
O based
0.21 Below Toe
® toe 4 0.5
0.117 Below Toe
0 15 30 45 60 75 Ns 0.0
B (degree) 20 10 5 21
Fig. 5 : Relationship between K. and g Fig. 6 : Relationship between K. and Ns
elsewhere®.

Extensive numerical results have been obtained by this program. The results are summarized in
Fig. 2 to 6 and Table 1 to 2. Some of the solutions are compared in Table 1 and Table 2 with the
existing limit equilibrium solutions.

(1) The relation between the stability number Ns and the slope angle 8 for the limit equilibrium
method!¥ are compared with the one for the present limit analysis in case of ¢ =0, #=0, P=0 and
the cohesion c=constant as shown in Fig. 2. Both relations quite agree to one another.

(2) The relationship between K. and L/H is shown in Fig. 3, 4. Generally speaking, it would be
sufficient to take 10 as L/H for a constraint in calculating the optimized solutions.

(3) Fig. 5 shows that the value of K. decreases as g increases. This figure also illustrates that the
failure mechanism passing below the toe (based-failure) changes to the failure mechanism passing
through the toe (toe-failure), around g8="50".

(4) Based on the results for these case of £=1.0, the variation of the stability number N, with yield
acceleration K. is shown in Fig. 6 where the solutions corresponding to the toe-failure are cut off
by the solutions based-failure for different upper slope angle a.

(5) Table 1 shows a comparison of critical heights obtained by the limit equilibrium method with by
the present limit analysis for the slope of anisotropic and homogeneous cohesion, in which the
former one performed by LO®. Going into detail, as in LO’s work, the value of m (see Fig. 1, a)
is taken to be 55° and the value of friction angle ¢ and acceleration K. are put nearly equal to
zero so that the statical log-spiral failure surface reduces to the circular one. Generally speak-
ing, both results are in good agreement.

(6) Table 2 gives the comparison of the results for the slope of anisotropic cohesion which increases
linearly with depth between two method of evaluation as in (5). Another word, the critical height
H. is compared with the results according to LO (1965) by means of the limit equilibrium method.
A good agreement is again observed.
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Table 1 Comparson of critical height : H, for anisotropic soil with constant
shear strength.

Curved failure surface

Slope angle Anisotropy  Limit :1 Limit :2
(degree) factor epuilibrium analysis Ratio of

B k ¢ circle log spiral 1/2
1.0 95.75 110.75 0.870
0.9 - - -
0.8

90 07
0.6
0.5
1.0 119.75 136.62 0.877
0.9 113.00 132.36 0.892

70 0.8 116.25 123.14 0.907
0.7 114.50 123.89 0.924
0.6 112.25 119.12 0.942
0.5 110.25 114.92 0.960
1.0 142.00 142.00 1.000
0.9 138.50 137.50 1.007
0.8 133.75 129.40 1.034

50 0.7 129.75 125.50 1.054
0.6 129.75 125.50 1.054
0.6 127.25 120.75 1.054
05 121.25 116.50 1.041 *Lo (1965).

Table 2 Comparision of critical height : H, for anisotropic soil with shear
strength increasing linearly with depth.

Curved failure surface

Slope angle Anistropy Limit :1 Limit :2 Ratio of
(degree) factory equilibrium analysis Ratio of
B k ¢ circle log spiral 1/2
1.0 50.00 60.97 0.820
0.9 50.00 60.45 0.827
90 0.8 50.00 60.30 0.829
0.7 50.00 59.40 0.842
0.6 50.00 58.85 0.850
0.5 50.00 58.35 0.857
1.0 69.25 72.10 0.961
0.9 68.25 72.06 0.947
70 0.8 67.25 70.77 0.950
0.7 66.25 70.40 0.941
0.6 65.25 70.20 0.930
0.5 62.25 68.68 0.910
1.0 94.50 103.70 0.911
0.9 91.50 100.50 0.911
50 0.8 89.00 98.00 0.908
0.7 86.25 95.40 0.904
0.6 82.75 92.40 0.896
0.5 79.25 89.50 0.866
1.0 137.50 135.50 1.015
0.9 -- - --
0.8 125.00 127.00 0.984
30
0.7 -- - .
0.6

n o o *
0.5 104.50 114.00 0.917 Lo (1965).
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