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Abstract
There has been a controversy on rate equations with a factor (1- #)~" in analyzing the “zero-
order” desorption. In order to resolve this, we will show and discuss the assumptions involved in the
derivations of rate equations within the framework of absolute rate theory. The factor (1- 8)7" will
be eliminated at higher coverges of adsorbates under the conditions used.

1. Introduction

Recently, J. -H. He" has proposed and discussed a model for Phase-transition-related zero-order
thermal desorption?. He has employed the method and procedure adopted by Nagai®. This has been
critilized by Zhdanov®, and subsequently by Cassuto®. However, Nagai has provided rebuttals for
them®. On the other hand, Kreuzer and Payne” have considered the rate equations from a different
aspect, i. e., on the basis of non-equilibrium thermodynamics.

The rate equations (presented by the desputants, Zhdanov® or Cassuto® and Nagai®) for non-
associated desorption with ideal localized model are
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where ¥ = kT/h has the usual meaning, N is the number of sites per unit area, # is the relative cover-

=yN

age and Eg4, is the activation energy for desorption. The transmission coefficient is omitted for sim-
plicity. Equations (A) and (B) are sufficient for the discussion of this subjust.

Nagai® has derived the rate equation (B) for desorption within the framework of the absolute rate
theory (ART) with two layers of the two-dimensional lattice gas theory. Considering the assumptions
involved in his treatment, Zhdanov® has concluded that the derived equation is identical to that of the
precursor theory”. More recently a similar comment has been made by Cassuto®, who has stated that
one of the relations of egs. (A) and (B) has to be wrong.

The essential point at issue is the derivation of the factor 1/(1— @ ) in (B), since this factor has
appeared in the expression of the rate equation for desorption in the precursor theory”. In this manu-
script, we shall only consider the rate equations in controversy, not the mechanism of the so-called
zero-order desorption?. The aim of this article is to show that both equations (A) and (B) can be de-
rived under different assumptions in terms of the ART. Thus we have to examine assumptions used
to derive the rate equations (A) and (B) in terms of the ART.
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2. Preliminary considerations

It is known that the form of eq. (B) can be derived by means of the precursor theory®. Let us
compare the rate equations deduced from the precursor theory as well as Nagai’s treatments in terms of
simple kinematical theory, as discussed by Zhdanov®.

The rate of desorption is written as

R=kj 6‘ i=%or= (2. 1)

where the ky is the rate constant of desorption from the state of i, the superscript i of k and 8 refers to
% for the percursor or to ¥ for the activated state. The problem is how to evaluate 8° ? The 6* is
determined with the assumption of the steady state in the precursor state, denoted as (I), while the
6" is determined with that of complete equilibrium between the initial and the activated states, de-
noted as (II).

Case (I). Let 8 * be

ky 6
* __ +
O =t (1-0) (2. 2)
with the steady state assumption for ( I );
d *
k0~ k- (1-0)0%— k0" (2. 3)

Here £+ and %2 _ are the rate constants of the forward and backward steps between the precursor and
the adsorbate states, respectively.

Putting eq. (2. 2) into eq. (2. 1), we get
kiky, 6

R T (1-0) (2

By the use of two different conditions, eq. (2. 4) may be written into ways :

R=%k.80 for Rk _(1—-6) (2. 5)
_ ksk_4

R—m for bi<<k_(1—0) (2. 6)

From these, it should be noted that in the extreme case when 6 = 1 the application of equation
(2. 6) breaks down.
Case (II). On the other hand, the ¢ ' 1s taken as

ke 8
*___ "+ Y
N (z..7)
with the equilibrium assumption for (II);
ke0=k_(1-6)67 (2. 8)
Putting eq. (2. 7) into eq. (2. 1), then we have
— kd k+ 4
R_—k_(l—ﬂ) (2. 9)

Eq. (2. 9) is similar to eq. (2. 6). As Zhdenov* has pointed out, the assumption that (initial) adsorbed
and activated particles are in thermodynamic equilibrium is not correct at § —1 .

3. Derivation of rate equations (A) and (B) by ART

In order to derive the rate equations (A) and (B) in terms of the ART as developed by Horiuti?,
(although there are several points of view in formulated the rate equation by ART)!? we need certain
functions for describing the rate equation for desorption. First of all we shall define and explain

these functions.
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C represents a macroscopic system. Let & be a single particle and C° is a system transferring &
from its standard state into C without specifying the whereabouts of the & within C. QC and QC? are
the partition functions of C and C? , respectively. Similarly C and C? are particular states such that
definite sites represented by ¢ are unoccupied and occupied by & with certainty. QCoso) and
QCo () are the partition functions of Cs (o) and Co(s) respectively. A ¥ means the symbol of the
activated state. Then & and 0 ¥ represent an activated complex and its site, respectively.

We shall define two particular functions p and q by

»_QC?

P ac (3. 1)
and

_ QC% s

977aC. (o) (3. 2)

Let us consider physical meaning of the functions of p° and q5 briefly. The Helmholtz free
energy F is written as

F=—kT In (p.1f) (3. 3)
where the p. . means the partition function. From the eq. (3. 3)

—kTlnp’=—kT(nQC°—1nQC)

=AF? (3. 4)

AF? is the increment of F, i. e, the reversible work required to transfer & from its standard
state into C without specifying the whereabouts of the & within C. Thus, AF? (eq. (3. 4)) may be
identified with the chemical potential in thermodynamics, so that

—kTlhp=4¢ or p=e H4# (3. 5)
Similary as in eq. (3. 4)

— kT Inq4=—=kT (In QC%(5)— In QC o)) (3. 6)
=AF}

AF?$ is the increment of F and C5 caused by the addition of a 8 to a definite, previously
vacant site ¢ on C.
— kT In q3 can also be expressed as

—kTlngé=—kTIng} .+ W (3. 7)
where g% o is the particular case of q5 in the absence of the interaction and thus can be represented

with a single particle partition function, q3, .= e */*T

, where € is adsorbate enthalpy.
— kT Inq5, . means the increment of F in the absence of the interaction and W is a part of the
change of F due to the interaction between ad-particles. But the evaluation of W is not the aim of
this article.

The ratio of q% to p? is, with the help of the equations (3. 1) and (3. 2)

a% _QC%(4)/QC,(s) _ QC%(5)/QC° _ B4ys) (3. 8)
p° QC°/QC QC,,/QC Bs(0) :
The function QC%(s)/ QCs(o) and QC? /QC are equal to the probacility that C® and C assume the
particular state C® and Co (o), respectively. Hence we have

QC%(5)/QCs(o)+ QC%/QC =1
admitting that the ¢ is either occupied by & or totally unoccupied and that the probability is practi-

cally unaffected by the addition of a single adatom to macroscopic assembly C. Denoting the prob-
ability QC%(s) /QC o(0) by 8 we have
p°__ ¢
% 1—4

We shall start from the familiar expression of the rate equation with the ART

(3. 8)°



116 EMNEIXESSESEMERLEEL S

Qce”®
R=v W (3. 9)
The expressions of eqs. (A) and (B) can be derived from eq. (3. 9) in terms of different conditions,
as seen below. It should be mentioned that the derivation of eq. (3. 9) has nothing to do with some
equilibrium relations between the initial (I) and the activated ( = ) states®.
Now, eq. (3. 9) may be transferred by the use of egs. (3. 1) and (3. 8)
QC"* QCB*/QC Pa*
v = —=V—
Qc? QCe .« #°
, Bor(0)/@ar(sry e*

- — 51 (3. 10)
(1—86)/6 q

ol

R =

As what follows, it will be shown how eq. (3. 10) reduces to the expressions of egs. (A) and (B).
At first we have to make some approximations on ® . For the first approximation the probability
that the site 6 is occupied by a single & ¥ is replaced by the reciprocal of the number of per unit

area
N@s+(s+)=1 or Os+(s5)=1/N (3. 11)
Then it follows,
3#
_ Oorio) do*
R_uN(l—ﬁ)/H q"l (3. 12)
ol

To modify eq. (3. 12) further, suppose that the site ¢ ¥ is identical with the ¢ (o™ =0 for sim-
plicity) and that ® ,+(o)=1 — @ , which means the probability that a site of & * is vacant. Eq. (3.
12) becomes

s* o¥

NI Bt ar

R_uu(l—ﬁ)/ﬂ N =vN§ 3 (3. 13)
q,1 q,

—(e¥—€)/ kT — Edes / kT . .
=e ' which is the

case for the non-interaction between ad-particles, eq. (3. 13) can be simplified to the familiar form, eq.

(A).

which is to be compared with eq. (A). By replacing q f:/ qiby e

We now consider a particular case: If ® s%(0)= 1 with © *= 0, which is the extreme case cor-
responding to lower coverage, eq. (3. 13) reduces to
54’
N- 1 q i
R—Vu(l_g)/e 51 (3. 14)
q,1
Furthermore when 68— 0, eq. (3. 14) is expanded as
*
q 8,*
R=v N4 o (3. 15)
q,:

On the other hand, if the site is independent of 6 (6 *=10) and ®,+(o)= 1, then eq. (3. 12)
becomes

s* Eh

N L o o %
R=Vu(1_0)/6 qal =UNl_ﬁ q5l (3. 16)

o1 .1

Apart from notations eq. (3. 16) is equivalent to eq. (B). The assumption used here may be iden-
tified with Nagai’s assumption. He assumed that the condition ® ,+(o)= 1 is applicable at all cover-
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ages of adsorbates. This assumption is not realistic as has been pointed out by Zhdanov*’. A de-
sorption rate equation used by He! (eq. (8) in ref. 1)) is essentially identical to eq. (3.14) with
A ®,+(s+ =1 in place of eq. (3.11), where A is the area occupied by & ¥ in one layer lattice gas
model. Since He’s treatment is almost a parallel to that of Nagai’s this is also open to criticism.

In summary, the rate equations (A) and (B) ((3. 13) and (3. 16) respectively) can be derived on
equal footing, but under different assumptions. As a matter of fact it is not correct to state that one of
the relations (A) or (B) has to be wrong. Therefore the important point is that when analyzing the de-
sorption rate, one has to take into account the applicability of the assumptions used in the derivations
of the rate equation.
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