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Abstract

The boundary element integral formulation and its numerical implementation for 2—dimensional
semi-infinite problem without cavities are reviewed to present the detailed forms of relevant matrices
which are not published explicitly up to now. Two examples, then, are presented to show the
excellence of the method in engineering practice.

Uit
P
: stress tensor

bj :
Eij
uty, p¥;:
: Young’s and shear moduli

Oij

E G

v:
:boundary of the body
Q:
3&,‘ :
S, s:
Qq:
’.image of s with respect to surface

: distance between s and q

: distance between s’ and q

r

n;:
& n:

E

/e
: length of element
le Nz :
: the number of boundary elements

1. Notation

displacement vector
traction vector

body force vector
total strain tensor
tensors corresponding to the fundamental solutions

Poisson’s ratio

domain of the body

Kronecker delta

load point for boundary and domain
field point for boundary and domain

outward normal vector

coordinate of inner points

Jacobian of transformation

local coordinate associated with boundary element

interpolation functions
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: the number of boundary nodes

- the number of Gaussian integration points

: weighting factor

: system matrix of all coefficients C,;

. system matrix of all displacements in the domain

U* : matrix of displacement fundamental solutions

- system matrix of all displacement fundamental solutions
: system matrix of all tractions

o ¥ xs

: unit diagonal matrix

. system matrix of unknown boundary conditions
: system matrix of all unknown boundary values
- system matrix of all prescribed values

- system matrix to obtain stresses

O x D ~T0

2. Introduction

Boundary element method (or boundary integral equation method) is the method that the govern-
ing differential equation is transformed into the integral equation defined over the surface and then
solved numerically by discretizing the boundary into a number of elements. This allows the final
system of equations even smaller than that of finite element method.

Followings are important features of this method ;

1) the dimension of the problem can be reduced by one

2) data preparation is simple to solve the problem

3) calculations on arbitrary internal points can be carried out easily and accurately

4) infinite or semi-infinite problems are properly modeled.
Above characteristics increase the range of problem analyzed and decrease computing time and cost.
This would be of much greater advantage than finite element method as applied to more complicated
problems.

On semi-infinite problems, few publications are found to attempt to present the detailed forms of
matrices with proper definition and results of differential process of parameters used. In this paper
an outline of boundary integral formulation is first given using fundamental solutions for elastostatic
half-plane type problem. The numerical implementation is then presented and some examples are
compared with analytical results.

3. Boundary Integral Formulation

Basic theory of boundary element formulation for 2-D semi-infinite problem is briefly reviewed
in this section.

3.1 Semi-Infinite Body
Static equilibrium of forces and moments of infinitesimal element within the body gives following
equilibrium equation
0i,i+ b:i=0 (1)
where first term represents space derivatives of stress tensor component and second stands for the
component of body force. Summation convention of tensor (Cartesian tensor notation) is used
throughout this paper avoiding long repetition of an index and the partial derivative is denoted by a

comma.
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Strains can be represented by the Cauchy’s infinitesimal strain tensor neglecting the square and
product of derivatives

5u=%(ui,j+ Uj.i). (2)

For an isotropic elastic material, Hooke’s Law is stated in the form

ZGEU GZ su&, ( 3 )

The equilibrium condition is expressed in terms of displacement by substituting equation (2) into (3)
and then the result into equation (1). This is well-known Navier equation written in the following
form

GuJ hk+ uk,k;+b,-=0. (4)

G
1-2y
It is the object here to obtain the solution of equation (4) for 2-D semi-infinite body by the direct
boundary element method.
The integral equation should be deduced either from the weighted residual technique or from

Betti’s second reciprocal work theorem using the Dirac delta function. The result is in the form

us)= [ti(s, QpAQdr~ [ ptls, QuAQdl + [[ut (s, ba)de (5)

which relates displacements at inner point s with tractions and displacements on boundary (at Q).
u?i(s, @ and p¥(s, Q) represent the displacements and tractions in the j direction at point Q (on
boundary) due to a unit point force acting in the i direction applied at point s (in domain). The last
integral on the right-hand-side is the body force term which is evaluated as domain integral. Body
force integral, however, is not considered through this paper.

u’ and p¥ are called fundamental solution. Fundamental solution for semi-infinite problem is as
follows (load point s on the boundary in Fig. 1)

*

Uun 27(G

—={2(1—v)In r— »2)

ub —ﬁ{(l—b)ﬁ—r,-r,z}

uh=— 27rG{ (1-2v)0—r,.r,)

uh=—5=(2(1-)ln 7 — %)
(6)

where
0=tal’1_l(Rz/R1)
_or r,
L™ (7)
and
-2  Or
p?i}— 7[7{7":7’»4 an} (8)

The limiting form of equation (5) as the inner point s moved to boundary point S must be
examined to obtain a boundary integral equation for unknown boundary values when boundary
conditions are prescribed. Interpreting the integrals which present singularities on surface in the
sense of Cauchy principal value and considering the condition of continuity of boundary displacement
u, the following equation arises" (body force term omitted)
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CoS)uAS)= [ ut(S,Q)p(Q)dl - [ p¥(S, QuA@)dr (9)

where the second integral on the right-hand-side is to be taken in the Cauchy principal sense. The
coefficient C;(S) is diagonal matrix which generally depends on the continuity of surface. But it will
be shown later that the coefficient can be obtained indirectly by applying the rigid body movement
representation.

Considering the behaviour of each term of equation (9) at infinity i.e. evaluating the asymptotic
behaviour by examining the order of variables, boundary integral equation for semi-infinite regions
without cavities (e. g. tunnels) is simply represented by

CoS)u(S)= [ut(S,@pAQ)dr (10)

where the integral is defined on loaded boundary only. Expression (10) is very useful as applied to
the semi-infinite problem with partial surface loads.

From equation (5) and above derivation, the representation of displacements at inner points comes
to

uds)= [[ut(s,Qp(Q)dr" an

Stresses at inner points are obtained by substituting the derivatives of equation (11) into the
Cauchy’s strain tensor (2) and then the results into the Hooke’s Law (3). The expression is as follows

0u()= [ Dta(s,Q)p(Q)dl (12)

where the tensor D%, is derived from the differentiations of «% with respect to the coordinates of inner
point s.

3. 2 Numerical Implementation
Boundary integral equation (10) can be written in the discretized matrices form as follows

HU= i:l { /. U*NdF}P"" (13)

where the boundary is discretized into [ elements (denoted I7}) with n nodes. N represent the
interpolation functions which approximate boundary displacements and tractions over each elements.
The integral of equation (13) is transformed to the local coordinates system since the interpolation
functions N are usually expressed in terms of local coordinate. The transformation is

dr=|\J|dn (14)

where 7 stands for local coordinate and |/| is the Jacobian of transformation.
Numerical integration schemes are effective procedures for the analytically difficult integrations.
The integral in equation (13) can be written in the form

/r U*Ndr= / 1 U*NUldy= Z T UN) Wi (15)

where K is the number of Gaussian integration points and W, is the associated weighting factor.
Equation (13) can be written in the matrix form as
HU=GP. (16)
Assuming a unit rigid body translation to the above equation, zero traction condition leads to
following relation
HI=0 an
where [ is a unit vector of displacement. Equation (17) gives computation of the diagonal elements
of H as (summation not implied)
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Hi=—3Hy (i=123,,n). (18)
Ji
Above equation, however, is valid only for finite body. Considering the limiting behaviour again
for the semi-infinite case, equation (18) is replaced by
Hu=1~ 3 Hy (i=123,+7) (19)
and it implies the coefficient Cy; in equation (10) can be evaluated indirectly.
By applying the prescribed boundary condition, equation (16) can be reordered to give the
unknown boundary values
Ax=f (20)
where A is fully populated matrix of order 2n, unknown displacements and tractions are included in
x, and f is formed by the prescribed boundary values.

3.3 Linear element

The discretization of the boundary by means of linear elements has been found to be efficiently
accurate for the numerical computation?. Numerical implementation according to this element type
will be shown in this section.

The Jacobian of transformation for linear element is

|7I=¢/2 (21)

where ¢ replesents the length of each element.
Interpolation functions are as follows

Ni=5(1-7), Ne=(1+7) (22)

where subscripts denote the extremities of the element.
Applying equations (21) and (22) to the integral in equation (15) gives the representation of
submatrix g of G in the form

[ & % g% &%
g_7'/:‘ U*Nd7]=[g%)l g?l)ll g(l?l g(lzl)ll] @3)
where superscripts denote the end nodes of the element and subscripts derive from those of fundamen-

tal solutions (6).

For the case of the field point ¢ and the load point s being on the same element during the
integration along the boundary, the half-plane fundamental solutions are singular because of the zero
distance. Analytical computation, however, can be carried out in this case and the results are

g% =%{2(1 - V)(%— fn(@) + cos’ﬁ}

g(?1=T{2(1 u)(——én(é))+cos’6}
&%= %{ (1—2u)t9+sin6cost9}
g(?u=g<})u

22, =LG{(1 2v)0+cosé smﬂ}
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g(l?ll 471'0{2(1 v)(——én(é))-}-sm }

=7 {2(1 u)( én(é))+sin249}. (24)
And for the non-singular case, expressions are obtained in the numerical integration form
&4 |_§k=l(u;"l]vl)k W= 87rG p2 1< 21— u)én(n)+coszl3k)(1 %) W
O L& N). W= Ls .
T '2-’;::1 (ul 2 l)k Qo ~ 876G g}( (1_21/)0+COS/3k Sll’lﬂk)(l— 71,) We
® =—€-2K:(u* N W= f}((l—Zu)0+sinB cosf )(1— YW,
£gil1 5 2\ Uz V) W= Gk:l & 3 Ne) We
=L Bt =g he B (-20- ) ln(r) +sint8 )1 -2 W,
gnu =) Uz 241 ) e W 831G & v)€n(re)+s M ) We
cosBx=(71/7)r, sinBe=(r2/7)s (25)

where simply the interpolation function is replaced to N, of equation (22) as to around the node 2.

Once all boundary values obtained from equation (16) and (20), computation of displacements at
internal points is also accomplished in the same way as the boundary values (equation (11)). No
singularities are in those calculations since the fundamental solutions obviously have non-zero
distances.

For the calculations of inner stresses, explicit forms can be represented through some differentia-
tions. The matrix D in equation (12) for node 1 will be expressed by submatrix g of equation (25) as
follows

Do= 2G(1—v) {g@

ll 1-2y ll.é+ﬁg??l,ﬂ}

D® 2(;(12;) {gq)ue'*‘ 1— guu 7]}

Dzl—G{g(Pl.n'}‘g?l)Le}:D%

Df= G{g?ll.r/ +g(lDlll.$} =D

Df= J(1;12_,/’/2{1 Vgllé'l"glllq}
Dy= JCl;lva{l Vglue"'guua} (26)

where the superscripts and subscripts are the same as g and derivatives with respect to & and » are
denoted by ,£€ and ,5. And each derivatives are as follows

o —_ 4 S _ ) 0SB _ 2c0SBx Sin®Be
= —gie 2 A= n) (20— 1) < )

Tr

g(l?m=—LGE (1= 70 Wi ((1—21/) COS Bx + coth(ZsinZB;.—l)

Tk

ne= g £ - n) W1 -2 SiEe "+S‘“'3’*(2°°SZB'=‘1))

Yr

gRu,= —8—,% S (=) Wk(z(l —y) Sibs _ Zoinfs cos”Bs )

g(Pl.rz=_ £ S (1= Wal 21— ) smﬁk 4 2sinfx cos Bk)

I
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o -
=g 3 (1= p) Wi~ (1-2y) SI0e sinfullcos’B— ) )

Yr

oy
=gl -7 Wi —(1—20) 8Ly cosBullsin'u) )

Tr

2
=g T A=) Wi(201— ) LB 2cosbaSin'fu ) (27)

Substituting Eq. (27) into Eq. (26) produces the final forms of matrix D as to node 1 in the form

DR= —% é}l (cos3/3h(1 — 78) Wk/rk)
DY= —é—r- b (COSZBI: sinBe(1— 7x) Wk/”k)
DR=D%

DR=D§

D§?= _% > <COSBI¢ Sinzﬂk(l_ 77k) Wk/rk)

4

Di=—37

(sin®8(1— ) Wilrs) 28)

where the replacement of function N leads to the results about node 2 as mentioned previously.
The displacements and stresses on the surface (where p,=0) can be obtained as those at internal
points due to the nature of fundamental solutions.

3. 4 Definition of parameters
The parameters used in the fundamental solutions and its derivatives are defined here for
ascertainment.

s'(g',n)

L Y r
i *2
| R
|
s r
s(g,n)
q
X
*1
Fig. 1 load point s, its image s’ and field point Fig. 2 Definition of # and § when the field
g which provide fundamental solutions point g is on the surface in Melan’s
for half-plane problem solution

The point s’ in Fig. 1 and Fig. 2 is the image of the load point s inside the body with respect to
the surface which provides complementary part of fundamental solution for half-plane problem
derived from the solution due to Kelvin. Fig. 2 shows the case that the field point ¢ is on the surface
in the Melan’s solution? (equation (6)—(8)). Following relations are apparently obtained
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Ri=§&—x=¢

r1=5—x1=§

Ro=r=79—1x

R=r (29)
and

sind=sinf

cosf@=—cosp. (30)

Derivatives of § with respect to € and 7 are
a8 _ 9 tan-! ( 7—%s )'if;_ﬁz__ sind _ sinB

08 9 &—x/ 6 R* R 7
00 _ 0 ., fn—x\_FR _cosf_ _ cos
9y dp tan <€’—x1) R R 2 (1)

which is applied to equation (26) to obtain equation (27).
For the computation of surface values, limitation form of 4 leads to

6= (32)

{% (72>0, n=0)
—% (7’2<0, 7”1=0).

4. Examples

Two simple and basic examples solved by linear element and half-plane implementation are
presented and compared with analytical results®.

Following calculations indicate the ‘strength’ of boundary element method, not only the accuracy
of values obtained but the advantage in pre- and post- processing.

4.1 Linear increasing loading perpendicular to the surface

The example consists of triangular strip loading on a finite part of semi-infinite medium under the
condition of plane strain. This problem was solved by discretizing the loaded part into only two
elements and three nodes (Fig. 3). Displacements and stresses at internal points are compared with
analytical solutions in Table 1.

Since only relative vertical displacements have physical significance for half-plane analysis, all
the vertical displacements are given relatively with reference to node 2 in Table 1. Stresses are
negative on compression.

Relative displacements are shown in Fig. 4. No confining conditions are considered to calculate
and figure. Such post process is very easy to perform since any desired values can be calculated
directly without any interpolations in the domain. This feature is one of the great advantages of this
method.

4. 2 Linear increasing loading parallel to the surface

This example is in the same way as 4.1 though loading direction is parallel to the surface (Fig.
5). Relative horizontal displacements, vertical displacements and stresses are given in Table 2 and
resultant relative displacements are shown in Fig. 6. Analytical results on displacements have not
been evaluated.
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2MPa
E = 30 MPa
v =0.3
9(0,-9) 3 2 1 10(0,9)
—_————— —-—— v
L 6 m 6 m
=
4(3,-6) 5(3,-3) 6(3,0) 7(3,3) 8(3,6)
o o ° )

Fig. 3 Linear increasing loading perpendicular to the surface.
Two boundary elements, three nodes and internal points to
calculate.
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Fig. 4 Relative displacements with reference to the vertical dis-
placement of node 2
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E = 30 MPa _ -7 2MPa
v =10,3 =" :
=7 [
=7 I
- |

9 3 -7 2 11 10
———— g = = = ———~y
6 m l 6 m

I T 1
4 5 6 7 8
L] L] [ ] [ ] L

Fig. 5 Linear increasing loading parallel to the surface

Fig. 6 Relative displacements with reference to the horizontal
displacement of node 2
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Table1 Displacements and stresses by vertially increasing loading with analytical results (in parenthesis).

No. 1 2 3 4 5 6 7 8 9 10
X 0 0 0 3 3 3 3 3 0 0
y 6 0 -6 -6 -3 0 3 6 -9 9
ux-ux(2) —4.375 0.0 | —27.574 | —27.371 | —16.328 —6.150 —2.115 | —10.346 | —36.181 | —24.731
(cm) |( —4.476) (0.0) | (—27.649) (—36.282) | (—24.832)
uy —10.4000 5.200 10.400 2.139 0.217 —0.768 —0.264 0.996 10.400 | —10.400
(cm)
oxX _ - | —149.79 | —514.77 | —959.48 | —1289.7 | —844.04 0.0 0.0
(kPa) (—149.79) | (—514.77) | (—959.48) | (—1289.7) [ (—844.04) 0.0 0.0
oy _ _ | —301.13 | —388.96 | —450.19 | —396.93 | —393.12 0.0 0.0
(kPa) (—301.13) | (—388.96)|(—450.19)[(—396.92)|(—393.12) 0.0) 0.0
oXy _ - _ 173.56 260.13 225.09 5.485 | —425.61 0.0 0.0
(kPa) (173.56) | (260.13) | (225.09) (5.482) [ (—425.61) 0.0) (0.0)

Table 2 Displancements and stresses by horizontally increasing loading with analytical results (in parenthesis).

No. 1 2 3 4 5 6 7 8 9 10
X 0 0 0 3 3 3 3 3 0 0
y 6 0 —6 -6 -3 0 3 6 -9 9

ux —10.400 5.200 10.400 -9.894 | —10.320 —8.973 —1.360 8.016 —7.800 7.800
(cm)

uy-uy (2) —4.375 0.0 | —27.547 | —26.411 | —21.835 | —18.112 | —16.827 | —17.653 | —29.181 | —15.024
(cm)

oX _ _ _ 173.56 260.13 225.09 5.4853 | —425.61 0.0 0.0
(kPa) (173.56) | (260.13)| (225.09)| (5.4819) | (—425.61) (0.0) 0.0

oy . _ _ | 677.66 621.67 343.31 | —148.28 | —526.85 760.94 | —1288.26
(kPa) (677.66) | (621.68)| (343.31)|(—148.28) | (—526.85) | (760.94) | (—1288.26)

oxXy - _ | —301.13 | —388.96 | —450.19 | —396.93 | —393.12 0.0 0.0
(kPa) (—301.13) | (—388.96) | (—450.19) | (—396.92) | (—393.12) 0.0 (0.0)

5. Conclusions

The application of boundary element method to the semi-infinite problems of 2—dimensional
shows that the method has many important advantages and potentials in engineering practice.

The procedure is more accurate than discretizing the domain using finite elements because

1) elements tending to infinity are not necessary

2) interpolation approximations are not performed to obtain the domain values.
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