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Abstract

This is a study of the best approximants in L! space by real analysis.

Consider the 7eal Banach space L' on a probability space (2, A, P). Given a g-subalgebra B of
A, let L'(B) denote the subspace consisting of all functions measurable with respect to B. Given a
function fE L', a function g& LY(B) is called a best approximant of f if g has the minimum distance

to f:
I/ —gl=inf{lf — &l ; he L\(B)}.

1. The set of best approximants of £ is not empty but contains the maximum, denoted by Us(f),
the Freudenthal spectral representation of which is given explicitly by

Us(f)=[:/la'ga,

where g is the characteristic function of the set {1/2< Es(xyz4)}, Es being the conditional expectation
with respect to B.

2. Let {B,} be a sequence of o-subalgebras. If the sequence {Es.(h)} converges to Es(h) almost
everywhere for every he [}, then

lim sup Us,(f)< Us(f).

1, Introduction and Preliminaries

This paper concerns the Banach space L! of real-valued integrable functions on a probability
space (Q, A, P). Given a g-subalgebra B of the g-algebra A, let L'(B) stand for the subspace of !,
consisting of all those functions that are measurable with respect to B. In an unpublished paper [4]
H. Kudo pointed out that each integrable function admits a best approximant in L'(B), that is, there
is a function in L'(B) with minimum distance to the given function.

The purpose of this paper is to study the property and the structure of best approximants. The
main results are summarized in the following. First of all, the Kudo’s result mentioned above is
incorporated in a more general theorem that every sequence in L'(B) that minimizes asymptotically
the distance to a given function is weakly compact. Here a sequence is said to be weakly compact if
every subsequence admits a limiting function in the weak topology of the Banach space L.!. The set
of best approximants in L!(B) of an integrable function f is shown to contain the maximum and the
minimum, denoted by Us(f) and Va(f) respectively, in the following sense : a function gin LY(B)is
a best approximant of the function f if and only if Va(f)<g<Us(f). The non-linear operators Uj
and V; possess several remarkable properties, which make it possible to give explicit spectral
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representation of Us(f) and Vs(f) in terms of that of f. As a consequence, the distance of a function
f to the subspace L'(B) is provided with a convenient expression. In the final section convergence of
a sequence of g-subalgebras are taken into consideration. The exact definitions of several conver-
gence concepts are given at the end of this section. The following convergence theorem will be
proved. If a sequence {B,) of g-subalgebras converges strongly to a g-subalgebra B., and if each g,
is a best approximant in L'(B,) of a given function f then the sequence {g,} is weakly compact, every
weak limiting function of this sequence is a best approximant in L'(B.) of the function f, and the
sequences {max (g», Us»(f))} and {min (g., Vs=(f))} converge strongly to Us«(f) and Vs«(f) respec-
tively. Furthermore under the almost everywhere convergence of the sequence {Bux} to B., it is shown
that

Vs.(f)<lim inf g, <lim sup g, < Us.(f)

In the rest of this section, the terminologies, the notations and the important tools used in this
paper are presented. Functions are denoted by f, g, 4, etc. As the study depends largely on order-
theoretic consideration, it is convenient to use some notations in the theory of vector lattices :

fVg:=max(fg), fAg:=min(fg)

and
*: =max (f,0) f~:=max (—£,0).

Remark the familiar formula :

f+g=fVeg+fneg,
in particular,

f=fr—f" and |f|=f"+f".
A constant function with value o is denoted by ¢ itself. The indicator (i. e. the characteristic
function) of a set D is denoted by x». For convenience, the notation {f < g} (resp. {f < g}) will stand
for the set of those points w<Q such that f(w)<g(w) (resp. f(w)< g(w)). The signature function of
a function f is defined by

sgn (f): =X — Xir<o.

The norm of a function is always the L'-norm :

A1z = f)1/1dP.

Remark that any two functions are identified if they coincide with each other almost everywhere.
The convergence in the norm topology is refered to strong convergence. The distance from a function
f to the subspace LY(B) is denoted by d(f, B), i. e.

d(f,B): =inf {|f —hll; hE L'(B)}.
Then a function g in LY(B) is, by definition, a best approximant of the function f if
If —gl=d(/,B).

The dual of the Banach space L! is canonically realized by the space L= of essentially bounded
measurable functions (see [5:§ 4.2]), and the weak topology is always understood with respect to the
pairing (L', L*). For instance, a sequence {g,} in L' converges weakly to g if and only if for every
hin L®
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lim fh-gndP= f h godP.

The most important fact concerning the weak topology is the following criterion on weak compact-
ness : a sequence {g,} is weakly compact if and only if it is bounded in norm and equi-continuous in
the sense that |xp, ga]| converges to 0 whenever P(D,) tends to 0 as %— oo.

In the study of this paper a dominant role is played by conditional expectation operators. The
conditional expectation Ex(f) of an integrable function f with respect to a g-subalgebra B is defined
as the uniquely determined function in L(B) such that

A Es(f)dP= /; fdP  for every D in B.

The conditional expectation operator Ej is a linear projection of the space L' onto LYB). This
operator is known to possess the following remarkable properties (see [5;§4.3):
(Semi-multiplicativity) : Es(f-g)=Es(f)-g if fEL' and g€ L*NLYB) or if fEL= and g€ L'(B),
(Monotonousness) : Ex(g)<Ex(f) if g<f,

(Symmetry) : fEa(f)'gdP= / f-Es(g)dP if fEL' and ge L=,

The conditional expectation of the indicator x, s will be denoted by Py(f <g). The notation
Ps(f < g) has the corresponding meaning.

It is natural to introdue convergence concepts in the set of o-subalgebras with the aid of
conditional expectation operators. A sequence {B,} of g-subalgebras is said to converge strongly
(resp. almost everywhere) to a g-subalgebra B., if for every integrable function f the sequence {Es,(¥)}
converges strongly (resp. almost everywhere) to the function Ez.(f). Almost everywhere conver-
gence implies strong one. The most important fact concerning convergence of o-subalgebras is the
Martingale Convergence theorem (see [5 ; § 4.5]) : each monotone sequence {Bn} of o-subalgebras
converges almost everywhere to a g-algebra B., where B.. is the intersection of all B, or the smallest
o-subalgebra containing all B, according as the sequence is decreasing or increasing.

2. Best Approximants

In this section B is a fixed g-subalgebra and f is a fixed integrable function. A sequence {g,} in
L'(B) is called an optimal sequence of f if the norm |f — g| converges to the distance d(f, B) from
f to L'(B). In contrast to the case of L*-approximation (1< p< o) (see [1]) the weak convergence
of an optimal sequence is not immediate, for the unit ball of the Banach space L' is not weakly
compact.

Theorem 1. Each optimal sequence is weakly compact and every weak limiting function of the
sequence is a best approximant. In particular, the set of best approximants is non-empty.

Proof. Let {g.} be an optimal sequence of the given function f. First of all, the optimality implies
boundedness in norm :

lim sup gl <|f]+1im suplf — gl <|f|+d(7,B).

Since the subspace L'(B) is isometric to the Banach space L(Q, B, P), the weak compactness of {g,}
in L(B) will follow from (and is equivalent to) its weak compactness in LYQ, B, P), or as mentioned
in § 1, from its equi-continuity. Thus it suffices to prove that lim ||xp,- &x|=0 whenever lim P(D,)=

n—e DpeB

0. This is proved as follows. Since

1%0n° all +1f = xne * al <1 — gall + 2l x0a* ]

and
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lim [0, /| =0,
the optimality implies
lim supl| . gl +inf |lf —xo5- gal < d(f,B).

On the other hand, since xpg- g, together with g, and x,, belongs to L'(B), the definition of distance
implies

iI;f"f- XDpe °gn|| = d(f,B).

These together yield the convergence of | xp,* 2| to 0, so that the equi-continiuty has been established.
Finally let g be any weak limiting function of the sequence {g,}. Then it is well-known in the theory
of Banach space that

If - gll<lim suplf — gl.
Now the optimality of the sequence {g,} yields
If—gl=d(f,B),

that is, g is a best approximant. This completes the proof.

The next theorem gives a characterization for a function in L'(B) to be a best approximant.
Recall that Ps(f < g) denotes the conditional expectation of the indicator xs<g-

Theorem 2. A function g in L'(B) is a best approximant of the given function f if and only if

P(f<g)<1/2 and Ps(g<f)<1/2.
Proof. By definition g is a best approximant if and only if
If —g+hl=]f gl for every k in LY(B).
Since for each fixed £ the function
p(e):=[f—g+eh| (0<e<oo)

is convex and has the non-decreasing right-derivative, the latter condition turns out to be equivalent
to the following :

lime™(lf —g+ehl—If—gl} =0 (hEL(B)).

Since e Y|f—g+eh|—|f—g|} is majorated by |4
and converges, as e—— 0+, almost everywhere to
sgn (f—g)-h+{1—Isgn (f —g)}}-14l,
an application of the Lebesgue dominated convergence theorem (cf. [5 ; § 2.3]) yields
lime™{If —g +ehl-1f —gl}
=fsgn (f—g)-th+f{l—Isgn (f =8I} |l dP.
Now it follows by the semi-multiplicativity of the conditional expectation operator that
[fsen (s~ g)-hdP= [Eslsgn (/)] hP

= [(Pole< /)~ Pols <))+ (h*— }dP
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and
f-lsgn (/—£)l)-|laP

= fa-Pie< /)~ Por <)) (h*+ 1) aP.

Therefore the condition for g to be a best approximant of f is that for every re LY(B)
Ja—2Pis<g)-hrap+ f1-2Pig< )i dP>o,

which is equivalent to the condition :
Pf<g)<1/2 and Pi(g<f)<1/2.

This completes the proof.

Lemma 3. For each integrable function f there is the maximum of those functions g in LN(B) such
that Ps(f< g)<1/2.

Proof. Denote by M the family of all those functions g in L(B) such that Py(f < g)<1/2. First,
M is non-empty. In fact, fix a best approximant g, the existence of which is guaranteed by
Theorem 1. Then g belongs to M by Theorem 2. Second, M is stable under the lattice operation
V. To see this, take g, € M and let D denote the set {g; >g). Then D belongs to the o-subalgebra
B and &V g=xp"gi+xpe* & so that Theorem 2 and the semi-multiplicativity of the conditional
expectation operator yield

Po(f<&V g)=xp*Ps(f < g1)+ xpe Po(f < @) <1/2,

hence gV g belongs to M. Now since every upper-directed bounded sequence in L' is a Cauchy
sequence, the proof of the theorem will be completed if the subfamily {ge M :@<g} is closed and
bounded in norm. To this end, take g€ M with go<g. Then Theorem 2 and the monotonousness of
the conditional expectation operator imply

Pyg< f)<Ps(m< f)<1/2

while Py(f < g)<1/2 by the definition of M. Therefore g is a best approximant by Theorem 2. This
consideration shows that the subfamily in question coincides with the family of all best approximants
greater than or equal to g, hence is closed and bounded in norm (indeed, bounded in norm by 2|#|).

The maximum in the assertion of Lemma 3 will be denoted by Us(f). Since Pu(g<f)=
Po(—f< —g), it follows immdeiately that — Us(— f) is the minimum of all functions g in L}(B) such
that Py(g<f)<1/2. This minimum will be denoted by Vi(f), i.e.

Va(f)=— Us(— ).
Theorem 4. A function g in LN(B) is a best approximant if and only if
Va(g) < g < Us(f).

Proof. In view of Theorem 2 and the definition of Us(f) and Vs(f) every best approximant
satisfies the inequalities in question. If conversely Vi(f)<g< Us(f) then

P(f<g)<Ps[f< Us(N)]<1/2

and

Ps(g< )< P Vs(f)< f1<1/2.

Now the assertion follows again from Theorem 2.
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In the manuscript [4] H. Kudo constructed a best approximant and showed that every function
g in LY(B) such that Px(f<g)<1/2 and Ps(g<f)<1/2 is a best approximant. Though he did not
obtain so complete description as Theorem 2, the idea of Lemma 3 is due to him.

Usually an integrable function admits many best approximants ; in general, Us(f ) does not
coincide with Va(f). Theorem 1 indicates that every optimal sequence admits a subsequence which
is weakly convergent to a function between Vi(f) and Us(f). Here strong convergence is not
expected, for the family {g€LYB) ; Va(f)<g< Us(f)} is not strongly compact.

The following simple lemma is useful to an improvement of Theorem 1 as well as in the next
section.

Lemma 5. If a function g in L\(B) is a best approximant and a set D belongs to the o-subalgebra
B, then

lxo+(f — @l =inf {lxo+(f = h)ll; hE L'(B)}.

Proof. For every h& LX(B) the function xp* h+ xpe+ g belongs to LY(B) so that by the definition of
a best approximant

If = (xo* b+ x0e- gl = d(f,.B)=If—&l.
On the other hand, the additivity property of the L'-norm yields
If = (o b+ %0 @ =20+ (f = DI+ 20 (F = &)l

and

If — gl=lxo+ (f = @l +lx0e- (f — &I

These together prove the assertion.

Theorem 6. If {ga) is an optimal sequence, then the sequences {g.V Us(£)} and {gaA Vs(f)}
converge strongly to Us(f) and Va(f) respectively.

Proof. For every n the set D, : ={g»> Us(f)} belongs to the g-subalgebra B and

g2V Us(f)=%pn* gn+ xps* Us(f).

Then Lemma 5 implies

If = gl =120 (f — @)l + | x0ne* (f — &)
2| xn* (f — gl +lne+ (f — Us(H
=|f—g.Vv Us(H=d(f,B),

hence the sequence {g.V Us(f)} as well as {g,} is optimal.
Now in view of Theorems 1 and 4 the sequence {g.V Us(f)} is weakly compact and every weak
limiting function is a best approximant, which is majorated by Us(f). This leads to the relation :

lim sup |V Us(f)— UsNH)I

=lim sup fgn\/ Ua(f)dP—fUB(f)dPso.

The proof for the convergence of {g.A Vi(f)} is similar.
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3, Operators Uz and Vp

In this section B is a fixed g-subalgebra. Recall that Us(f) (resp. Va(f)) is the maximum (resp.
minimum) of all best approximants of 7. The mapping f —— Us(f) (or Vi(f)) is non-linear but it has
many remarkable properties.

Theorem 7. The non-linear operator Us has the following properties :

@ Us(af +h)=aUs(f)+h for a20 and h€ L'(B).

() Us(fi)< Us(fo) whenever f<fo

(©)  Us(xo*f)=xp* Us(f) for DEB.

d) Us(fAa)=Us(f)ANa and Us(fV a)=Us(f)V a for real a.

() |Us(g)l<2lf].
The assertions (a)~(e) are valid with Us replaced by V.

Proof. The assertion (a) results immediately from the definition of Us. Recall that by Lemma 3
the function Us(f) is the maximum of those functions g in L'(B) such that Px(f< g)<1/2 where
Ps(f < g) is the conditional expectation, with respect to B, of the indicator xi;<s. Now the assertion
(b) is a consequence of the monotonousness of the conditional expectation operator. To see (c), take
any DEB. Since the semi-multiplicativity of the conditional expectation operator yields

I

Pslxo* f < xp* Us(f)]=x0- Ps< Us(f)],
the characterization of U mentioned above implies
xp° Us(f) < Us(xp+ f)
Since this implies, for every » >0,
Pslxp+f < nxper Us(xp* f)1< Pol xp+ f < Us(xp* £)]<1/2
and since xpe+ Us(xp- f) belongs to L'(B), Lemma 3 yields
nxpes Us(xo )< Us(xp-f)  (n=12,-),
which together with the part proved above implies
0=xpe* xp* Us(f) < xpe: Ua(xwf)S%Ua(kn'f),
hence
Us(xo* f)=xo0Us(x0" ).
The corresponding formula with D replaced by D¢ is
Us(xpe* f)=xpe* Us(xpe- ).
Then since by Theorem 4 and the semi-multiplicativity of the conditional expectation operator

Pslf < Us(xp+ f)+ Us(xpc* )]
=Py[xp-f< Us(xp* )]+ Palxpe* f < Us(xpe* f)]
<(xp+xpe)/2=1/2,

Lemma 3 yields

Us(xo* )+ Us(xpe* £) < Us(f)

hence
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Us(xp* f)=xp Us(xp*f) < xp* Us(f).

This together with the reversed inaquality obtained earlier proves (c).
To prove (d), remark first of all that (a) and (b), combined with Lemma 3, imply

Us(F Ae)< Us(f) A and Us(fV @)= Us(f)V .
Since Us(f)Aa belongs to LY(B) and
Pslf Na< Us(f) A al < Pol £ < Us(£)1<1/2,

the definition of U in Lemma 3 implies Us(f)Aa< Us(f Aa). Now to complete the proof of (d), it
remain to show that the set D: ={Us(fV @) > Us(f)V a} has measure zero. Obiously D belongs to the
¢-subalgebra B and

DN{f<Us(fVa)lS{fVa< Us(fVa)}

so that the semi-multiplicativity and the monotonousness of the conditional expectation operator yield
xo Plf < Us(fV @)]< Pslf V a< Us(f V @)]<1/2,

hence by Lemma 3 and (c)
xo+ Us(f V &)< Us(xo* f) =10+ Us(f) <0+ [ Us(f) V a],

which leads to P(D)=0 by the definition of D.
To see (e), it suffices to prove that

[ivstniap<e [ E\fhaP  (DEB).

But since Us(f) is a best approximant, Lemma 5 yields

Ixo-[f — Us(H <%0+ f1

so that the definition and the semi-multiplicativity of the conditional expectation operator imply

o+ Us(ON <250+ fl=2| Es(xp* )l =2l x5+ Es(F,

which is just the expected inequality.

The assertions (a)~(e) with Uy replaced by V; follow immediately from the relation : Vs(h)=
— Us(—h). This completes the proof.

These remarkable properties of the operator Uz make it possible to give a concrete representa-
tion of Us(¥) in terms of the given function f. Such a representation will be most conveniently
established with the aid of the spectral theory that is familiar in the theory of vector lattices.

A one-parameter family {gi; —co<A< oo} of indicators in L' is called a spectral family if it is
non-decreasing, i.e. g, £ g, Whenever A,<4,, and g, converges strongly to 0 or 1 according as A—
—oo0 or —o0. A spectral family {g;} introduces the notion of integral in a natural way : for —oo<
a< B< oo the inegral /a Adg, is defined as the strong limit of the Riemann — Stieltjes sum

,2=x &gy —gum)
as max;{1;—A,;-;) tends to 0, where
a=/10<Al<</1n=B and Aj-]S£jS/L'.

Just as in the case of the numerical Riemann — Stieltjes integral the following estimate is valid :
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B n
U‘ AdgA—Z Elgi— i) Smax(/l-—/l,- .

When / Adg, is strongly convergent as ¢—— —co and f— oo, the limit will be denoted by f Adg;.
To each integrable function f there is assigned its canonical spectral family {#}, where £, is the

indicator of the set {f<A}. This spectral family is 7ight-continuous in the sense that fu converges

strongly to f; as x tends to A from the right. The function £ itself is recaptured as the integral :

f= [ “adf.

Conversely if f is given as the integral f c°/1zz’ga with respect to a spectral family {g,} then each £, in
the canonical spectral family is determine_&o as the strong limit of g, when 4 tends to A from the right.
These are only a reformulation of the Lebesgue integration theory.

Lemma 8. Let —oo<a<f<oo and €>0. For each integrable function f and for each partition
of the interval [a, B] such that

a=A<A< < An=F with lrgas); (Ai—A-1)<e,
| Us(f) —gl(gu—gu-n) —ag.—B(1—gs)|
<e+2Es[(f— o) +(f—B)*]
and
|Us) A= B Qi = W~ 2l

S2e+2(f—a) +2f =B +2Es[(f — &) +(F - B)*],
where f, and g, ave the indicators of the set {f<A} and {—< Ps(f<Q)} respectively.
Proof. Since Theorem 7 implies

Us(N)=[Us(£)V @] A B~ [Us(f) —al"+[ Us(f)— B1*
=Usl(fV ) ABI+ Usl—(f — )71+ Usl(f — 8)*]

it follows that

|Us(f)— Usl(f Va)A Bl
S2ES[(f—a) +(f-B)*].

Let £ = 3},(fy— )+ afat B1—15)
and g’ =J§ml/1,~(gx, — &)+ aga+ B(1—gs).
Since obviously
[f V) A B—FI< max(4—A-1)<e,
Theorem 7 yields
|Usl(fVa)A Bl Us(f)| <,
hence
|Us(f) = Us(f ) < e+2E5[(f —a)+(f - B)*].
Then to prove the first assertion, it suffices to show Us(f)=g’. To this end, let
—{f<A} and Dy: ={5<PAf<A)) j=01,m

Since obviously
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f =§ml/1jxc,ncc,-, + axco+ Bres
and

g =§;/bxo,nocj_n + axpo+ Brxos
it follows that

('<&)=0 [C1N D;N D5-11U[CasN D)
and

(g'<f)=0 (D10 CN C5-11ULDA-1N C5)

Since every D; belongs to the g-subalgebra B, the semi-multiplicativity of the conditional expectation
operator yields, on the basis of definition of D’s,

Ps(f'< g')=épn(fﬁﬂj-l)'xombcj—l+Pu(f$/‘m—1)‘xocm3 1/2,

which implies by Lemma 3 the inequality : g’< Us(f’). On the other hand, the semi-multiplicativity
of the conditional expectation operator again yields

xuy<vsrm Po(f S A< Pl f' < Us(f)]<1/2,
in other words

U< UMY {Ps(f <) <1/2).
Since by the construction of #’

{fr<at=C={<a j=01m—1
the definition of g’ implies

< Us(feDi={a<g}  j=01m—1.

This implies Us(f')<g’ and consequently Us(f')=g’. In fact, otherwise there is a A such that the set
{A< Us(f)} is not contained in the set {A<g’}. Since both Us(f’) and g’ are majorated by A, and
minorated by A, there is 0< j< m—1 such that ;;<A<A;+1.  Then since by the definition of g’ the set
{A< g’} coincides with the set {4,< g’}, the set {4;< Us(f’)} is not contained in {4,< g’}, a contradiction.

To see the second assertion, remark that, when applied to the algebra A instead of B, the first
assertion just proved yields

lf—Ffl<e+2(f—a) +2(f—B)*,
so that
|Us(f)—fl—(g"—f")
<2e+2(f—a)y +2(f—B) +2Es[(f —a) +(f—B)*].

Now it remains to prove that
|g'—f'|=§l(/1j+l—/11)|fxr—gu|~
To this end, note that
£~ =B A=)~ g0)

and
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m
sgn (g,_f/)=j§1x6/—\ﬂD/nD°/-1 +Jme‘mD°m
m
_jglxbj-mC;ﬂCj-lc_xDm-lnC"m-
Then it is readily seen that for 0<k<m—1

(fu—2gu)-sgn (g'—f)
=Xcunpent Xpuncee=|fa, — gl

and consequently
m=-1
lg'—f'1= Z (Ari—A)(fuu— gu) -sgn (&'~ 1)

=:lz=::(/1k+n—/1h)lfu-'gu|.
This completes the proof.
Theorem 9. For each integrable function f its maximum best approximant Us(f) and the
minimum one Vs(f) admit the following integral representations

Un)=[Cides  and V)= [ aah.

where g and hy are the indicators of the sets {1/2< Po(f<A)} and {1/2<Py(f<A)} respectively.
Further the distance from the function f to the subspace LXB) is explicitly given by the following
Sormula :

d(#,B)= [~ 11/2~I1/2~ P(r < Dllda.
Froof. Given ¢>0, take @< oo< g such that
2 sar Fl+xrsme Fl<e
and take a partition : g=A< i< "< An=p with max (Ai—A;-1)<e. Then obviously
B m
|f Ang_E Ai(g/‘/_gl/-l)lse
a J=1
while by Lemma 8
| Ua(f)—g:l Aj(gxl—gx,-lﬂ
<e+2E5((f~a) +(f - B)*]+|alga+ B(1— gy).

Remark that by the definition of the conditional expectation

|Es[(f —a) +(F—&)*lI=I(f —a) +(F = B)*]
Lxirsar fl+Ixisa- £

and by the definition of g

lol- lgall <2lal- | Ps(f < @) <2l a1+ £
and

BI1—gel <28 P(B< AI<2lx1r5m° 1.
These inequalities yield

1Us(7)~ [ 2dell<6e

and the integral representation for Uz(f) follows immediately.
The integral representation for Vz(f) follows from the relation :
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Ve(f)=— Us(— f).

To get the expression for the distance d(f,B), let {f,} be the canonical spectral family of f, that
is, for each J, £, is the indicator of the set {f<A}. Since d(f, B)=| Us(f)— f|by definition, Lemma 8
implies, just as above,

|4.B)='E, (rr= Al <6

hence

d(7.B)= [ Ifi—gldi.

Now it remains to show that
Ifi—gll=1/2—1/2— Ps(f <A).
Remark that Ps(f <A)=Es(f:) and
[1/2— Po(f <A ={Es(f)—1/2}ga+{1/2— Es(f2)}-(1 - 21).
Since g, belongs to L=N L'(B), the semi-multiplicativity of the conditional expectation operator yields
li-gll= [[fi-(1—g)+(~ ) g:]aP
= [(Es(£)-(1- @)+ {1~ Ea(£) - &:]dP
=1/2— [i1/2- Es(f)ldP=1/211/2~ P/ <)

This completes the proof.
The formula for the distance in Theorem 9 was found, in its primitive form, by Kudo (3, 4].

4, Convergence

In this section By, Bs, -+, B= are g-subalgebras. Recall that the sequence { B,} converges strongly
(resp. almost everywhere) to B. if for every function f in L' the sequence {Ejz,(f)} converges strongly
(resp. almost everywhere) to Ez.(f). Kudo [3] proved that the strong convergence of {B.} to B
results from the following weaker condition :

log |EaAl=1Es()]  (fEL).

On the other hand, Becker [2] pointed out that the strong convergence is a consequence of the
following weaker condition : for every f in L! the sequence {Ejz,(f)} converges weakly to Es.(f).

Convergence problems of best approximants in the case of L? spaces (1< p< oo) were discussed
in a previous paper [1].

Theorem 10. Suppose that a sequence {B,} of o-subalgebras converges strongly to a g-subalgebra
Ba. If each g, is a best approximant in L\(B,) of one and the same function f, then the sequence {gn}
is weakly compact and the sequence {g,V Us.(f)} (vesp. {ga A Vi=(f)}) converges strongly to Us.(f)
(resp. Vs (f)). Every weak limiting function of the sequence {g.} is a best approximant in L'(Bx) of
the function f.

Proof. Since strong convergence implies equi-continuity and since

|gnl <|gnV Us(H)+|gn A Va(S)

the weak compactness of the sequence {g,} will follow from the strong convergence of {g,V Us.(f)}
and {ga A Vs.(f)), as remarked in § 1. To prove the strong convergence of the sequence {g,V Us.(/)}
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to Us.(f), take according to Lemma 8 ¢, y>0 and a partition — y=A< A<+ <An=7y such that

| Usi(f)— :’g (=A™ =7

<e+2Ea[(f=7)'+(f+7)]  (n=12),
where g{™ is the indicator of the set {1/2< Ps(f<A)}. Since for every A, by hypothesis, Ps.(f<A)
converges strongly to Ps_(f<A) as n— oo, by taking a subsequence if necessary, it can be assumed
that for every j=0, 1, -, m the sequence {P,(f <4;)} converges almost everywhere to Ps.(f<4;) as
n—oo. Further it can be assumed that the sequence {Ez:[(f —7)* +(f + 7)"]} is dominated by some
integrable function and converges almost everywhere to Ez.[(f — 7)*+(F+7)"]. Since g.< Us.(f) by
Theorem 4, it follows that

gnv UB(f)_ UB.(f)
=[gn— Us.(N]* <[ Us:( /) — Us(N]*
<T Q=W — 2"+ 26

+2Es[(f =) +(F+ 1) ]+ 2Es[(f =)+ (f + )]

Then

0<lim sup[gxV Us.(f)~ Us.(/)]

L2e+4Es[(f =) +(f+7)7]
as well as
lim suplgnV Us.(f)— Us.(/)

<2e+4|(f =N +4IF+ )l
Now the strong and almost everywhere convergence follows by letting y— oo and e——(. Remind
that strong convergence takes place for the sequence {g,V Us.(f)} itself while almost everywhere
convergence can occur, in general, only for some subsequence unless the sequence { B} itself converges
almost everywhere to B.. The strong convergence of the sequence {g, A Vs.(g)} to Va.(f) is proved
similarly. Finally, to complete the proof of the assertion, suppose that the sequence {g,} converges
weakly to some g.. Since for each function h in L= the sequence {Es,(%)} converges strongly, hence
in measure, to Ej.(%), the equi-continiity of the sequence {g,} yields

lim /Ea,.(h)°gna'P= /Ea.(h)-gma’P.

On the other hand, the symmetry of the conditional expectation operator implies

lim [Es.(h)- gndP=1im [+ Es.(gx)dP= [h* gudlP.
These together yield g.=FEs.(g.), SO that g. belongs to L'(B.). The weak convergence of the
sequence {g»} to g. implies

d(f,B)<If - gell<lim inf | — gall=lim inf d(/,B,).

Finally, for each function g in L'(B..) the strong convergence of {Es,(g)} to g implies
If —gl=lim|f — Es.(g)| = lim sup d(f,B.).

These together yield that g, is a best approximant in L'(B.). The theorem has been completely
proved.

Theorem 11. If a sequence {B,} of o-subalgebras converges almost everywhere to a ¢-subalgebra
B.., then for each integrable function f

Ve(£)<lim inf Vau(f)<lim sup Usi(/)< Us.(/).
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Froof. Since for every A the sequences {Ps.(f <A)} and {Es,[(f — A)* +(f +1)"]} converge almost
everywhere to Pp.(f<A) and Eg.[(f—A)*+(f+1)"]} respectively, the proof of Theorem 10 proceeds,
not with a subsequence but with the sequence {B,} itself, and the assertion follows with g, substituted
by Us.(f) or Va,(f).

Corollary 12. Suppose that {B"} is a monotone sequence of o-sugalgebras, and let B. be the
intersection of all By's or the smallest ¢-subalgebra containing all B,'s according as the sequence {B,)
is decreasing or increasing. If each g, is a best approximant in L'(B,) of one and the same function
f, then the sequence {g,} is weakly compact and

Ve(f)< lim inf g, <lim sup g < Us.(f).

Every weak limiting function of this sequence is a best approximant in L\(B) of the function f.
This follows immdeiately from Theorems 10 and 11, for the sequence {B,} converges almost
everywhere to B. by the Martingale theorem, mentioned in § 1.
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