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Abstract
A boundary element formulation of two dimensional semi-infinite elastic body with
constant gravitational loads is introduced precisely according to the procedure presented
by Jiang! to obtain explicit form for computer program.

1. Notation
u; : displacement vector
p; : traction vector
b; : body force vector
u*;,p*; : tensors corresponding to the fundamental solutions
I" : boundary of the body and tunnel
£ : domain of the body and tunnel
n,n,,n, :outward normal vector
G, ; : Galerkin tensor
B; : integral part of body force
B, : integral part of body force (matrix form)
u/,p! . displacement and traction due to body force
ud, p? ;. displacement and traction due to disturbance
G : shear modulus
. Poisson’ s ratio
. unit weight of ground

T =R T

- radius of boundary I",

2. Introduction

Boundary element method has many advantages derived from that the governing differential
equation is transformed into the boundary integrals defined only over the surface which simply
require discretization of the boundary,

In practical applications, however, geotechnical problems are in the presence of body forces
such as constant gravitational loads. It is obvious that domain integral term have to be comput-
ed when body forces are considered. Unfortunately, this requires whole domain to be divided
into internal cells for integrations in generally which increases the amount of date preparation
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and loses much of BEM’ s advantages over the domain type analysis such as FEM. Thus, it is
of fundamental significance to deal with domain integrals for further development of boundary
element method.

In this paper the transformation procedure for two dimensional half-plane problem is intro-
duced to have an explicit form for computer program primarily according to the method propo-
sed by Jiang? who presented a procedure to transfer the domain integrals onto the boundary
for the half —plane problem making use of Galerkin tensor originated from Danson? ,

3. Transformation of Body Force Integral
Boundary intergral formulation including body force term is

wot [ ptyu,dr=[utp,dr+{utb,de ()

The second term on the right-hand-side requires discretization of whole domain to evaluate
the integral. This treatment, however, increases the number of elements extremely and is also
hard to apply to infinite or semi—infinite problem. Transformation of this domain integral to
the boundary in terms of Galerkin tensor is the end of this section.

In what follows gravitational loads are considered as the body force denoted by b; in equa-
tion (1). Now the b; is taken out of the integral as constant gravitation field is assumed. The
body force term of equation (1) is

B,»=b,<J;u‘}‘,-d£ (2)
where

b,=1

b2=0 . (3)

7 is unit weight of ground, The coordinates for the problem are defined in Fig. 1. Fundamental
solution using Galerkin potential function are described by Saada® as follows

ut; = %[Z(I_V)Gij.kk"Gik.u] - (4)

o X2

IRNT

Fig.1 Coordinates for half-plane problem

To substitute equation (4) into equation (2) and apply Gauss’ theorem leads
b;
Bi:WJ‘r [Z(I_V)Gif.h_Gik.j]nde (5)

where n, is direction cosines of outward normal at the point on the boundary, Domain integrals
are transformed to the boundary by equation (5).

Corresponding Galerkin tensor for Melan’ s half -plane solution is deduced by Jiang as
follows
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G, =Ks{- rzlznr _ [8(1-»)22—(§:i;4yu))] RnR | zc(?—eu)
o= Kl (3—;1:1)_ci(§—c29 _ 2(1—2(1;)_(:;)V)R29 |

G, =Kl (3—421(1/1)_@;? tetg 2(1—2(;)_(::)»)R29 )
Gpo= Kol - rzlznr _ [8(1—u)22~(§3_—44uv))] R2nR (ir—zzey)

}

}

1

Ks= dr(1-v)

where the definition of variables in the above expressin is shown in Fig, 2.
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Fig.2 Definition of variables in fundamental solutions and Galerkin tensors

Melan’ s displacement solution will be obtained by substituting equation () into (4). These
results for displacement, however, show difference on u}, and u}, by constants from those of
Danson’ s or Telles’ . Corresponding Melan’s solution are shown below for completeness

2
wii =K, —@=4v)inr + 10— 20-»)(6-4¥)~[8(1-v)2- (3= 4)] InR
+[(3—4V)R.2—Zcr] 4cxR,?

R® R )
wip= K, (D0« 2N o AFT (- ) a-20) 0)
u= Ko -T2 + @20 AFR -y a-20)0 )

u3,=K.{ —@—4v)inr +%2— 2(1—v)(B-4v)—[8U—-v)2—(8—4v)] InR

[(8—4v)r,2+ 2¢x]  4dcxr}

* R? Rt

1

K= %7a-m0 @

These differences do not have any important effects on the prpblem since these constants co-
rrespond to a rigid body motion and disappear when differential treatment is carried out for
strain and stress computation, Equation(7) is the fundamental solution through this procedure,
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4. Boundary Integral Formulation for half — plane problem
In what follows, boundary integral equation is obtained assuming tunneling problem in
the half-plane.

X1
Fig.3 Boundary and domain due to excavation in the semi-infinite ground
(QR=Q,-Q.)
Let us consider the domain Q, bounded by T, with adequately large radius p in the half-
plane changes to Q “due to tunnel Q, bounded by I", as shown in Fig, 3. The integral equation
as to interior displacement can be written as follows,

ui+jrap?iujd1-'+J'“p}',ujd[‘=I”u;'.‘].pid[‘+f“u}‘jpjd[‘+In,u§jbjdg . (8)

Note that no integral part on horizontal surface is in the above expressin since the traction-free
condition of fundamental solution is included.
The displacement and tranction can be separated into two parts as
u;= ui+ ud
p;= pi+ p! ©
where the superscript of f and d denote gravitational force prior to excavation and disturbance
due to tunneling respectively.
The body force term can be also expressed by the difference of two domain integrals as

B.=[ uibde=[ utbdo-[ ub,de .

The expression of integral equation (1) is rewritten as follows according to the variables in
Fig. 3.

wi+ [ proutdr=[ wiptar+[ uwib,de u
Substituting equation (9) and (I() into equation (8) and taking account of equation (1)) , leads to
u; frap?ju?dF + J'r ptu;dl’ = J'“u?ipgd[‘ +Ir ut,p;,dIr— J; ut;b;dQ+ul 1@

Applying Saint-Venant’s principle— two distributions of forces, when statically equivalent,
have the same resultant force and moment (stresses )at large distances —, following equation
is obtained

fim [ ptyusdr = fm[ ut,pdr .

Above equation means that displacements and tractions due to tunneling in the half-plane
are the same as those due to an equivalent concentrate load (fundamental solutions ) at suffi -
ciently large p.
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Hence equation (2 is simply written as follows
u-‘""];cp?iu,d_l“_: J’r u?ipjdl_ Ia.u?jbjd£+ u{ (10

which implies that displacements at any interior points can be obtained by the boundary and
domain integrals for the excavated parts and free term of analytical solution without tunnel.
This free term is given by the elastic stress-strain relationship, which is
(1-2v)

=T a6a- ) ot 5
0

The domain integral on the right-hand-side of equation (i4 can be transformed into the fol-
lowing boundary integral by using equation (5), and all the integrals in the equation (4 are, then,

represented merely on the boundary.
B¢= J;;‘u?ibidg
=Eé-u|’ll'c[2(1—y)c‘f-k_Gik.j] n'kdE_ (16

where n, ~in the above equation is outward normal direction cosines just the opposite to that

u

—_

uf

in equation (5).
Equation (1f) can be rewritten as follows
B,=B;;b; 1Y)
The complete forms of B;; are listed below (B,, and B, are omitted because b, is always
equal to zero)

B“=%L‘{[(I—ZV)G“,1] ni+[2(1-v)G,,.,— Gy, N3} dT

B,,= 710_J‘r‘{[(1-2V)G2|.1] n{+20-v)Gy;. 3= Gyp.\1n2}dl

GHJ:KS{‘L(I%M— AR, (1+ zan)—ng?—z—}
Giy.o= Ks{~ ﬁz—ZM—Aer(l +2InR) + A,c(@+ Ré';z )
Gron=Ks(Ase(6 — F) + AT A (2R, 6 -1p)
Gar =Kol Age(8 — 2y = AT 44, (2R, 0-r,))

TR Agc?R
Gay. =K Asgz -t 661‘22 L+A(2r,60 + R
+ Agery?

G22,1=Ks{—£72M+ Ay + ) B+ 2inR) - A9y

_ 1
Es=Z7za-»n
A= 8(1—v)2-(3—4v)

! 2(3—4v)

-1
427 2(1—-v)

_ 3—4v
AT S a-)

2(1—-v)(1-2v)
3—4v
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_ 34y
4s 1-2v

_ 1
A= 15,

__ 4U-v)?
A 3—4v

Above consideration, thus, gives a boundary element formulation of semi—infinite elastic body
with gravitational loads as body force without domain integrals of the problem.
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