A note on L1-bounded martingales. II

By Toshitada SHINTANI * (Received November 25, 1992)

Abstract.

Let f be an X-valued martingale when a Banach space X has the Radon-Nikodým Property. If f is L^1_X -bounded then f is of bounded variation. Using this the martingale transform g of f converges a. e. in X.

1. Notations.

Let (Ω , a, P) be a probability space and a_1 , a_2 ,... a nondecreasing sequences of sub- σ -fields of a. Let X be a Banach space with norm $|\cdot|$ and the Radon-Nikodým property. Let $f=(f_1,\ f_2,...)$ be an X- valued martingale with norm $||f||_1=\sup_n E\ |f_n|<\infty$. Let $v=(v_1,\ v_2,...)$ be a real-valued predictable sequence, that is, $v_k\colon \Omega\to R$ is a_k measurable, $k\geqslant 1$. Then $g=(g_1,\ g_2,...)$, defined by $g_n=\sum\limits_{k=1}^n v_k\ (\ f_{k+1}-f_k\)$ with $|v|\leqslant l$ in absolute value, is the transform of the martingale f by v. Write $||f||_p=\sup_n ||f_n||_p$ and define the maximal function g * of g by g * (ω) = $\sup_{k=1}^n |g_n(\omega)|$.

2. Results and the proofs.

Theorem 1. If $||f||_1 < \infty$ then $\sum_{n=1}^{\infty} |f_{n+1} - f_n| < \infty$ a. e., that is, f is of bounded variation. Proof. By Chatterji's result, $f_n \to f_\infty$ a. e. in L_X^1 as $n \to \infty$.

Now, for almost all $\omega \in \Omega$

$$\begin{split} &\sum_{n=1}^{\infty} \left| f_{n+1}(\ \omega\) - f_{n}(\ \omega\) \right| \leqslant \ 2 \cdot \sum_{n=1}^{\infty} \left| f_{n}(\ \omega\) - f_{\infty}\left(\ \omega\) \right| \ . \\ &\text{Let } a_{n}(\ \omega\) = \left| f_{n}(\ \omega\) - f_{\infty}\left(\ \omega\) \right| \ \text{ then } \lim_{n \to \infty} a_{n}(\ \omega\) = 0. \end{split}$$

Thus, for $0<\epsilon<1$, there exists a number $N=N(\ \epsilon\ ,\ \omega\)>0$ such that $0\leq a_n(\ \omega\)<\epsilon<1$ ($\forall\ n\geq N$). So $0\leq \sqrt[n]{a_n(\ \omega\)}<1$ ($\forall\ n\geq N$). Let $x_n(\ \omega\)=\sqrt[n]{a_n(\ \omega\)}$ and $S=\{\ x_1(\ \omega\),\ x_2(\ \omega\),x_3(\ \omega\),\dots\}$.

Since S is a bounded infinite set of real numbers in general, by the Bolzano-Weierstrass' theorem, S has the accumulation point $\lambda = \lambda$ (ω) ≥ 0 and $\lambda = \lim_{n \to \infty} x_n(\omega) < 1$.

In fact, if $\lim_{n\to\infty} x_n(\ \omega\) = \lambda = 1$ then, for $0 \le \forall \ \varepsilon < 1$, there exists a number $N = N(\ \varepsilon\ ,\ \omega\) > 0$ such that $|\sqrt[n]{a_n(\ \omega\)} - 1| \le \varepsilon$ for all $n \ge N$. So $0 \le (1-\varepsilon\)^n \le a_n(\ \omega\) \le (1+\varepsilon\)^n$ ($\ \forall\ n \ge N$).

If ε does not near to 0 then $\lim_{n\to\infty} \sqrt[n]{a_n(\omega)} = 1$ does not hold so let $\varepsilon \to 0$ then N is nondecreasing and N = N (0, ω) is finite or infinite.

Since for $\varepsilon = 0$ the above inequality holds for all $n \ge N$ when $N = N(0, \omega) \le \infty$, so

^{*} 数学,一般教科助教授

$$\begin{array}{l} a_{\infty}\left(\right.\omega\left.\right)=\lim_{n\rightarrow\infty}l^{n}=l\neq0,\ \text{if}\ N<\infty\,,\\ =1^{\infty}=1_{n\rightarrow\infty}^{\min n}=\lim_{n\rightarrow\infty}1^{n}=l\neq0, \text{if}\ N=\infty\,. \end{array}$$

Thus it is not that $a_n(\ \omega\) \to 0$ as $n \to \infty$. This contradicts to the fact that $a_n(\ \omega\) \to 0$ as $n \to \infty$. Thus $\lambda \ne 1$.

So, by Cauchy's result, $\sum_{n=1}^{\infty} a_n$ (ω) converges for almost all ω . Therefore $\sum_{n=1}^{\infty} |f_{n+1} - f_n| < \infty$ a. e..

Theorem 2. If $||f||_1 < \infty$ then the martingale transform g converges a. e. in X.

In fact.

$$|g_{\infty}(\omega)| \leqslant \sum_{n=1}^{\infty} |v_n(\omega)| \cdot |f_{n+1}(\omega) - f_n(\omega)| \leqslant \sum_{n=1}^{\infty} |f_{n+1}(\omega) - f_n(\omega)| < \infty$$
 for almost all ω .

Corollary. Let $v=(v_1,\,v_2,...)$ be a sequence of any random variables with $|v| \leq 1$. Then $h_n = \sum_{k=0}^n v_k (f_{k+1} - f_k)$ converges a. e..

Theorem 3. Let 1 . For a Banach space X with the Radon-Nikodým property,

$$\lambda \cdot P(g^* > \lambda) \le c \cdot ||f||_1, \quad \lambda > 0 \text{ and } ||g||_p \le c_p \cdot ||f||_p \text{ hold.}$$

Proof. For any Banach space X, by a result of Burkholder (Theorem 1.1 of [2]), the following statements, each to hold for all such f and g, are equivalent:

$$\|f\|_1 < \infty \Rightarrow g$$
 converges a. e.,
 $\lambda \cdot P(g *> \lambda) \le c \cdot \|f\|_1, \quad \lambda > 0,$
 $\|g\|_p \le c_p \cdot \|f\|_p.$

Combine this result with Theorem 2.

Acknowledgement. The author is very grateful to professor D. L. Burkholder for his kindly discussions in details.

References

- [1] D. L. Burkholder: Martingale transforms. Ann. Math. Statist., 37, 1494-1504 (1966).
- [2]—: A Geometric characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probability, 9, 997–1011 (1981).
- [3] D. L. Burkholder and T. Shintani: Approximation of L¹-bounded martingales by martingales of bounded variation. Proc. Amer. Math. Soc., 72, 166-169 (1978).
- [4] S. D. Chatterji: Martingale convergence and the Radon-Nikodým theorem in Banach Spaces. Math. Scand., 22, 21-41 (1968).

DEPARTMENT OF MATHEMATICS
TOMAKOMAI NATIONAL COLLEGE
OF TECHNOLOGY
TOMAKOMAI, HOKKAIDO 059–12
JAPAN