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LP-convergence of an extended stochastic integral
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Abstract
Let 1<p<oo. Letf={f(t), 0=<t<1}bean LP-ntegrable martingale and v ={ v (t), 0<t<1)}a
family of random variables with a continuous parameter t. Suppose |v| =1 in absolute value and that
v (t) is continuous. Put

Sm—1
0m=£:ov($m,k)[f(tm,k+1)—f(tm.k)]-
Here, V&, « €[ty & tm’k+1],k?0,a.Ildeax(tm,k+l_tm,k)_’O asm-—oco.

Then 6, converges in LP and 6. defines a new stochastic integral J'; v(t)df(t).

Let (Q, a, P) be a probability space and { a; } . = ¢ a nondecreasing family of sub- ¢ -fields of @. Let f
={f(t), 0<t=<1}be an L’-integrable martingale where 1 < p < oo on a probability space ( Q , g,
{a.},P)andv={v(t), 0<t<1} afamily of random variables with a continuous parameter t.

Suppose that |v| <1 in absolute value, v (t) is continuous and v (t ) is a;-adapted.

Let A={A )}, where A ={ty x: 0=ty o<ty ; <-oer <'tm s =1}, be a sequence of parti-
tions (i. e., subdivisions) of [0, 1] with |A | =Mkax(tm, k+1—tn )= 0 asm-—co. Here notice
thatif m f oo thens t o . Soit maybethats =s,ands, t © asm t .

Put 0=3 V(€m0 [{(tmis1) = E(tm )] (VEmy €ltn sy tmxr1] k>0)

and Tr= 3 ¥ (tm 1) [t 1)~ £t 0]
By the results of R. C. James [3] and G. Pisier [7],

Theorem. (G. Pisier [7, Theorem 1. 3, (iv)])

Let X be a Banach space and f = (f,), = ¢ an arbitrary X-valued martingale.
Then

( %) X is super-reflexive ( = super-Radon-Nikod{ym)

<>

(**)Z Iy 41— fall, < Csup Il @ <p <oo).

(Here, C is a constant which does not depend on f.)
Since X = R is super-reflexive, ( % % ) holds.
( % % ) shall be called by the name of Pisier’s inequality.
In this paper, it is proved that the following theorem holds :

Theorem. 6, converges in LP and 6 o= 0= v (t) df (t).
8 » defines a new stochastic integral.
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Proof. Let1 <p<o,.

16 mlly=EY [(Z v(&m ) [£(tm, x+1) = £t ) IDP]

SEW[(Z V& m )Mt 4 ) = f(tm, )DP] Here, [vI<1)

SEW[(Z 1f(tm 1)~ f(tm, ) DP] (Since LP is a Banach lattice. See [8].)
SZ Nt e 1) = £t Ol

=C-sup f(tm Oll, @=0,1,2 - ) (By Pisier’s inequality)
(Since C does not depend on f, C does not depend on m.)
=C-sup ()N,  (Since tm, x €[0,11].)

=C- (L,
(Since |f(t)|?is a submartingale, E [f(t)|P=E [f(1)|°
so EY? [|f(t)IPISE™ [[f(1)[P]<).
Thus, E [ [6,/P1=CP- [[f(D)II,P
and E[||?]=E [lim [6,[°]
Sliminf E[[6,/°] (By Fatou's lemma.)
=CP- lf (DI <.
Therefore || oll,=C- [If(1)ll,<,ie, 6 € L
Next, it is proved that the existence of 6 o .

By a result of P. W. Millar [5], &, converges in LP,
thatis, lim (6, —8,ll, = 0.
m, o

Take arbitrary € >0 and fix this.
”0m_‘§m”p§:t=_ol “ [V( Em,k)_v(tm, k)][f(tm,k"‘l)_f(t‘m.k)] ”p

=E B [V € 1) (9) = v (tm 1) (@) HECm s 1) (@) = £(tm 10 (@)IP].

Here, since v (t) is uniformly continuous on [0, 1], for sufficiently large my =mp (€, @ ) =my( @)
[V(&mi) (@)= vty ) (@) <€ (V k=0, V m=my)
holds for every @ € Q. Therefore, form =m( @ ) = m,
|V(ém,k)(w)—V(tm,k)(w)Hf(tm,k+l)(w)_f(tm,k)(w)l

Ser |f(tn k1) (@) =ty ) (@) (VKZO).
Since LP is a Banach lattice,

BB (198 1) =V (b ) HE (1) = £t )P

gi'go‘ E¥ (e [f(tm k+1) — £(tm ) DP] (The right-hand side increases in m.)
=T R [Ce (i)~ E(tw, DR

(Here, sincem =m( @ ) €{0, 1, 2, -+ , o)and0<mp<m(w)<oo,

m«=§ggm(m)e{0, 1, 2, seeeen , ©}.)

=¢ 2;1 I Ctor e+ 1) = £ Ctar, i)

=c¢ -Egp:go_l ”f(tm', k+1) — f(ty, k)”p
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m €{0, 1, 2, -+ , M7, e , ©}. m” does not depend on @ .)
=S¢ -sup{C -sup [If (te, n)llp} By Pisier’s inequality.)
Se-sup{C-sup If(DIl,}  (Since tor, » €[0,1]))

Se ‘E?P{C - lfC1)ll,}  (Since f is a martingale.)

=e-C- lf(Dl,
Here, by the arbitrariness of € , itcanbethat € -C- [[f(1)[|, <€ holdsforany €’ >0 . So

lim 1 —Gnll, <&’ forall € >0.

From 10— 0,11, 10— Foull, + 18, — 84, + 116, — 8.1,
it follows that
lim 16— 0,1, S2lim 18 = Full, +1im [T =F,ll,

<2-€"+0=2¢€" foral " >0.
So, by the completeness of R, 4, converges in LP.
From this proof € = Fm=ﬁ v (t) df (t) follows.

Remark. When p > 1 the Pisier’s inequality implies the Burkholder’s LP-inequality in [1] so that the Mil-
lar’s results [5] hold without that v (t) is a,-adapted. Therefore, it may be that v is any uniformly bound-
ed and continuous random variable.

Corollary. ﬂ, v(t) dB(t) converges in L2
(The convergence of this integral cannot be proved by the method of R. L. Stratonovich [10] .)
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