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Some Properties of Acoustic Phonons in a Superlattice
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Abstract

Transmission rate and dispersion relation of phonons in a superlattice were calculated theoretically. The
superlattice is assumed to consist of GaAs and AlAs, whose interface is (111) plane. In this calculation, wave
vectors of the phonons are restricted within (110) plane, and only the SH wave is considered. But incident
angles of phonons are not restricted to an angle normal to the (111) interface. At oblique incidence, frequen-
cy gaps are found other than at zone boundaries and zone center in the dispersion relation. And the frequen-
cy gaps are corresponding to frequencies of dips in the transmission rates.

1. Introduction

Various phonon properties in superlattices have been studied both theoretically and experimentally”. In
most cases, incidence angles are restricted to normal to interfaces of superlattices. Or the interfaces have
even-fold symmetery like (001) plane.

In this paper we considered the case where the interface has three-fold symmetry, i. e. the (111) plane.
In this superlattice, incident angles and the reflected angles are not necessarily the same as in the case of in-
terfaces with even-fold symmetries. This causes differences between the incident and reflected angles as will
be explained later.

Fig. 1 shows the structure of a superlattice we consider. Unit cell of the superlattice consists of 150-
monolayer-AlAs and 60-monolayer-GaAs as shown in Fig. 1 (@). Each monolayer has a thickness of 0.326
nm, i. e. thickness of this unit cell is D = 68.5 nm. The superlattice consists of five unit cells. Substrate is
assumed to be GaAs, and detector layer is AlAs as shown in Fig. 1 (b).

In this paper we used the numerical values of the material densities and stiffness coefficients given by S.
Adachi®.

2. Slowness Surface

Both AlAs and GaAs are the cubic crystals. So the slowness surfaces are easy to draw. Fig. 2 (a)
shows slowness curves in the (110) plane of GaAs. AlAs has the similar slowness curves in the (110) plane,
but their sizes are smaller than those of GaAs. Fig. 2 (b) shows slowness curves in (110) plane, whose left
hand part is of AlAs and whose right hand part is of GaAs. The (111) interface is normal to the sheet and
separates AlAs slowness curves from GaAs slowness curves. Thick lines in both Fig. 2 (a) and (b) show
slowness curves of SH phonons (or pure shear waves), whose polarization vector is perpendicular to the sheet
(or parallel to [110] direction).

In this paper we concentrate on the SH phonons. The SH phonons can easily be analyzed theoretically.
This is because SH phonons do not couple with the other modes in the reflection or transmission processed at
the (111) interface as far as the (110) sagittal plane is concerned.

In the numerical calculations we used stiffness coefficients as given in the Appendix.
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Figure 1 Structure of the superlattice.

(a) A unit cell consists of 60-monolayer-
GaAs and 150-monolayer-AlAs, and their thick-
nesses are H2 = 60 X 0.32639 nm, H1 = 150
X 0.32639 nm respectively. Total thickness
becomes D = H1 + H2 = 68.5419 nm.

(b) Substrate is made of GaAs. From this
substrate to the interface, incident waves are
propagating. And from the interface some
parts of incident waves are reflected. Trans-
mitted waves appear in the detector layer, in
which no reflected waves do not exist.

Figure 2 Slowness curves on (110) plane.

(a) The slowness curves are shown in a
GaAs bulk. Thick oval line is of pure-shear
(SH) waves that we are considering. There are
another two curves for quasi-shear waves and
longitudinal waves.

(b) Slowness curves of AlAs and GaAs are
shown in a figure separated by (111) interface.
If we consider incident wave propagating from
GaAs to AlAs with a certain frequency, we can
put a corresponding wave vector on the figure.
Because of the conservation law of momen-
tum, reflected wave and transmited wave vec-
tors are easy to be shown as in the figure.
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3. Transmission Rate

Fig. 3 shows coordinate system that we use for the calculation of transmission rates. X, Y and Z are the
crystal axes of a cubic crystal. The axes x, y and z coincide with [112], [110] and [111], respectively. This
coordinate system (x, y, z) is obtained by two consecutive orthogonal transformations from the coordinate sys-
tem (X, Y, Z). At first we rotate (X, Y, Z) about Z-axis by 45 degrees, and then rotate the system by
cos X1 /V/'3) radians about y-axis. After these transformations, the stiffness matrix of the cubic crystal in
the coordinate system (x, y, z) becomes

{881] (¢t €12 13 0 ¢;5 0
z Cap Caz C3 0 o5 0
[c] = C31 €32 C33 0 ¢35 0

0 0 0 Cy 0 C46 (1)

Figure 3 Coordinate system for the stiffness
matrix.

X, Y, and Z axes are crystal axes of the
cubic crystal. The axes x, y, and z are for Eq.
(1), whose directions are [112], [110), and [111]
respectively.

Each element of this matrix can be expressed by the three independent stiffness coefficients of the cubic crys-
tal. Explicit forms are given in the Appendix. We simply note here that the above matrix [c] is symmertric,
i e [c]=I[c].

At first we consider pure shear waves in the bulk®. For these waves, the displacement vector of the
medium can be expressed as

0
u=[u,] 2)
0 .

We also assume that the displacement is a plane wave propagating on the (110) plane and polarized in [112]
direction. Thus the nonzero component of Eq. (2) becomes

uy,=| u, | exp (thx + thz — iw}). 3
Equation of motion can be derived from Eq. (1) and Eq. (3) and reduced to
CockZ F Ccuk? + 2ceh ke, = Pw?. @

From this equation we can obtain the slowness curves of SH phonons on the (110) plane. Nonzero elements
of the stress tensor derived from Eq. (2) and Eq. (3) are

G =ilcuk, + chy)u,,

Ty =1(car b, + o5 ky) u,. (5)
After some calculations we can express the time averaged energy flux as follows
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— 1

P, =7 sk, + cos ) @ u, |7,

P,=o,

- 1

Pz=?(c44kz+c46kx)wluylz- (6)

We apply the above results to the superlattice shown in Fig. 1. Superscript (j) on the right shoulders of
the quantities means the values in the j-th layer in Fig. 1. In this layer we assume displacements as follows

uf,” = uﬁi) =,

uy?) = A9 exp (thx + ik{i)z; — iwi)

+ BY) exp (ik,x — k{72 — iwp), @
where z; means the z-coordinate measured from the interface between the j-th and (j-1)-th layers. It should
be noted that the z-components of wave vectors of incident waves and one of reflected waves are not the
same because of the three-fold symmetry of the (111) interface, but the x-components of the wave vectors are
the same because of the conservation of momentum or the translational symmetry in the x direction. Non-
zero elements of the stress tensor are

) =ial) AY) exp (ikx + ikii)e; — iwt)
+ i BY) exp (ikx — ki 2g; — iwb),
a3 =iy AD) exp (kx + k)2 — iwt)

+ 160 BY) exp (ikx — ik 2 — iw), @®
where
@)= 4P KD+ Pk,
B == &P KD + &k,
79 = B+ )k,
S =— P2+ )k, O]

Using the boundary condition that the displacement and stress at each interface of j-th and (j + 1)-th layer
must be the same, we can get the following matrix expression for the amplitudes in Eq. (7) and Eq. (8) :

AG+D . . A
[+ o] =M 201~ M) [2,], 10)
where
iy <[ exp k7 z) exp (— ik z)
M(z) [ia‘“exp k2 2) iﬂ(i)exp(_ikgi_)zi)]- ay

With repetition of the above calculation we can get relation between amplitudes in the substrate and in the de-
tector layer :

) )
Aw =[MPO)]"'T*M® (0) A(s) ) (12)
B® B
where
T=T(2)T(I),
and
T =MPDH)MD 0] . 13)

The amplitude B’ of the reflected wave should vanish in the detector layer”. With this condition we can
calculate the transmission rates of the SH phonons from the substrate to the detector layer as

PP
ﬁ=w|pf| ) 14
where
A(D)
F, =6 (15)

Eq. (15) can be derived from the 2 X 2 matrix in the right hand side of Eq. (12). In Eq. (14), P®)is a ener-
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gy flux of the incident waves in the substrate, and 17155 is one of the transmitted waves in the detector layer.
In deriving the above formulae we assume that the phonons are incoherent. Results of numerical calculation
are shown in Fig. 4.

Figure 4 Transmission rates and dispersion re-
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4, Dispersion Relation

Making use of Eq. (13) we can calculate the dispersion relation of the SH phonons on the (110) plane.
We define matrix T from a product of the matrices 7V ”’s for AlAs and GaAs. We use superscript (I) for
AlAs and (II) for GaAs, 1. e.

T=TUYT0, 16)
If we give a frequency and an incident angle of phonons, the matrix T is determined. The crystal wave num-
ber g is then obtained from two eigenvalues of the matrix 7. Thus, all we have to do is to solve the charac-
teristic equation :

det [T —XE]1=0, a7
where
Z=exp (ig D), (18)

and E is a 2 X 2 unit matrix. Results of numerical calculation are shown also in Fig. 4 together with the
transmission rate.

We should note here that determinant of T is not unity, i. e.

det [T1= exp [i (k{2 — &™) Hyj) exp [i (61 — £P- ) H)). 19)
In this case, 1/ X is not an eigenvalue of Eq. (17) even if X is an eigenvalue of the 2 X 2 matrix 7. (This
case does happen if the interfaces of a superlattice has even-fold symmetry.) This stems from the difference of
the z-components of incident and reflected wave vectors.

5. Discussion and Conclusion

From the slowness curves in Fig. 2, we see that the reflection causes ST to FT mode conversion for the
pure shear waves in (110) plane from the (111) interface. As shown in Fig. 4 the dispersion relation has fre-
quency gaps inside the folded zone, and at these gaps the transmission rate has sharp dips. These results
stems from the three-fold symmetry of the superlattice we study.

Fig. 2 shows that there exist two phonon modes other than the pure shear wave we are considering.
One is the longitudinal pressure wave and the other one is the quasi-shear wave. We have to consider these
modes in detail and obtain observable phonon characteristics. A expected feature can be seen in the trans-
mission rate and the dispersion relation of the SH phonons we have derived. We expect similar results are
obtained for those two modes.

Appendix

There are general expressions for slowness surfaces for cubic crystals?. But these expressions have
singularity not convenient to numerical calculations. So we have used stiffness coefficients in the rotated
coordinate system given in Eq. (1). We use those results to calculate slowness curves in Fig. 2.

Each element of Eq. (1) can be expressed in three independent elements of stiffness matrix for cubic
crystals. We express these three elements by a, b, and ¢ which represent ¢;;, ¢;5, ¢y, respectively in the
usual crystal coordinate system, then the elements of Eq. (1) become as follows. In the following formulae
we put

— -1 1
Q = tan W .
a2 . 5 2 2 . 9 a—b+2c .,
¢ = bsin® @ + ¢ sin 2Q + cos® Q { @ cos® Q + b sin Q}+Tsm Q

—b—2
12 =a—bZ—c-sian +b
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€13 =—csin® 2Q + cos? Q{w&n"’ Q+ b}+ b sin* Q
Cly = 0

. a_b_ZC 2
Ci5 = szQT @ sin°Q — 2)
Ci6 = 0
C21 = Cr2

_a+b+2c

2~ 2

—b—
€23 =aTZ(:c0s2 Q+b
Coqg = 0

—b—2¢c .
Cos =¥Sm 20
Cos = 0
C31 = C13
C32 = C23

1 . b+2 .

3 =a (—2—cos4 Q+ sm‘Q) + -; < (cos? Q + sin® 2Q)
C3q = 0

. a—b—2c . 5
€35 = sin ZQT(I — 3sin® Q)
C36 = 0

C41=C42=C43=0

—b—
ot =, 3 2 cos? Q+c

s =0
a—b—2c .
6 =—4 —sin 2Q
C51 = €15
Cs2 = C25
Cs3 = C35
csq =10

Css=¢ +i(a — b —20) sin® 2Q
8

cs6 =10

Co1 = Cp =¢Cs3=0

Cos = Cg6

s =0
_a—b—2c

Cos —Tsin2 Q+c¢

If we rotate the z-axis about the y-axis by larger than # radians in [110] direction in F ig. 3, we can get stiff-
ness from the above formulae by the substitution

QEtan_IL—/‘
\/z .
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