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ABSTRACT
This article is a self-study note for foreign students. The content is a part of lectures, particularly
in Laplace transformation and its applications.

1 Laplace Transformations

1.1 Gamma function

In this chapter, we study Laplace transformation and its applications. The terms “Laplace transforma-
tion” and “Laplace integral” are sometimes used as same meaning. We shall consider Laplace integrals
through Gamma function. Then, we shall review the definition and some properties of Gamma function and,
in addition, Beta function, which is closely related with Gamma function. Let a be a positive parameter, a >

0. The improper integral lim [Te =2~ ! dt may exist, and is written simply [5e ~%° ™ ! dt, which is called
Gamma function :
T(a)=[Tett* " 1dt (1)

Substituting ¢ = x 2 in the definition (1), we obtain another form of Gamma function :

Integrating by parts in the definition (1), we get
o _ _ 1
T(a)=[ye~ e Yat="T(a~1)

Rewritting the above equation, we obtain a recurrence formula :

I'(a+1)=al(a) (3)
If let a be a positive integer # ( @ = n ) , the reccurence formula (3) can be written

I'(n+1l)=mn! (4)
That is,

M'(a+1)=aT(a)=a(a—1)T(a—1)=-=a(a—1)(a—2)=2"1
where

r(1)=1 (5)

From such a result, Gamma function is so-called factorial function.
1
Next, taking a =5 in the definitions (1) or (2), we have
1 o _ ®  _
r(g)=lre~ ¢ ta=2[7e ‘de=2—\/2i=\/7 (6)
Using the reccurence formula (3), we have

rf3)-rtbe)-belb)-be

* associate professor
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rfg)er{ger)-$rii-34

In the general case of a = half integer, another reccurence formula can be obtained,

ontl| 2n—122—3 31 1 2n Il (2n—1)!
=TT e F(z) — VT 2o

Example 1. Evaluate the following integrals.

VT

r|
f:e-xzxanx (2) I:e—xzx2n+ldx
Solution

et gin Lo ipap gy (213!
J‘e 22 2n gy IZ-I‘ ty Td—————(n_l)!zz(”_l)\/;

I:e - xzx 2n + ldx’2==‘ —é—.l‘:e - ’t"dt(z-);s‘)_r‘ﬁl_)( =n7!)

2
Exercise 1. Verify the following formulas by the method of the change of variable.

e t=x 1 1y\e! 19=x 1 e —x%
(1 T(a) =" [log(;) @ @ Tla)="5fle "
We shall show the relation between Gamma and Beta functions :

T(a)T () _
W—B(d,b)

Beta function is defined
B(ab)=[ite"1(1—1t) lat
which is symmetric with respect to the parameters ¢ and b; B (a, b y=B (b a).
B(a,b)l_:x—f‘:(l—x)"_lx”_ldx=f:,x”'1(1—x)“_ldng(b,a)
Subsituting ¢ = sin® 6 in the definition (9), we obtain another form of Beta function :
(9 "= 2 [T g%~ 19cos? " 10d0
Finally, by using these, it follows that
P(a)I‘(b)=f:t“'le_‘dtjmtb_le_’dtgz.l.:xz“_le_"zdt‘Zj.:yz"—le_’zdy

x=rcos§

m [T [ R R) g2 B gy 20 g2 [ [T A aege =1 B L gsin® g - rivd

— r _’2 2(a+b)=1g,. ©  9p—1p.2—1 (2)_;-(:10) _
2[le 7y dr-2[cos™ 1651640 = T(a+b5)B(ba)=T(a+b)B(ab)

The identity (8) is established.
Example 2. Evaluate the following integrals.

n n 1 1
[Fawoas @ [Teosr0ds O [igm=y

Solution.
(1). From the formula (10), it follows that
_ 1 T(a)T(b)
T -1 1 _L )
I fcos® ~10db = 2 T (a+b)

Here, let a =”—;1— and b =~;—, then the equation reduces to
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r n+1 r 1
( n2;2)+(12)) =%B(’H2-1'%)

T o 1
[Tsiroao =

r(
In the case of n = 2m, the equation reduces to

(2m—1)(2m—3)---3-1 = (2m—1)!! =«
2m-(2m—2)---4.2 2~ (2m)!! 2

In the case of n = 2m + 1,

2m+(2m—2)---4-2 (2m)!

(Zm+1)(2m—1)--3-1  (2m+1)I!

1 1 .
(2). Putting a =7 and b= n;— similarly in (1), we have the same results. From these results, we

may write

o (n:even)
ﬁ_sin”ﬁda =ﬁ'cosnﬂd0 _ n!! 2 :
o ’ (n—1)!!
Tl (n:odd)
(3). 1 1
- 11y Tlg)r(e)
Ioﬂdt=3(7' 7)'—_1_‘(%—4_%):(\/?)2:”

Exercise 2. Verify the following formulas by the method of the change or variable.

x

(1) B(a,b)l==17 I:(—l_i‘_;—)mdx

xa—l

x+1

t=—=>

2 1 1 —
(2 B(ab) = WI_1(1+x)“+l(l—x)" ldy

1.2 Laplace Transformation (Laplace Integrals)
1.2.1 Definition or Laplace transformation
Replacing e “‘and ¢ “~ ! by ¢ ~ *' and a general form of function f ( ¢ ) in the definition (1) respectively,

and lf;%f:e ~ st ( t) dt may exist, we write

LUF(t)=F(s)=[Te=%(¢)at 0
which is called Laplace integral or Laplace transformation. Here the symbol L denotes Laplace’s linear integ-
ral operator and ¢ ~ * is the kernel of its integral operator. The term “linear operator” means that

L(af(t)+bg(t))=al (f(t))+bL(g(t)) (12)
L(f(t))(orF (s)) is called Laplace transform (or the image function) of the original function f (¢ ). It
is convenient to use both the notations L ( f(¢#)) and F (s ), which represent Laplace transform and the im-
age function of the parameter s implicitely of the original function f ( £ ) , respectively. Hereafter for simplic-
ity, we assume that a one-to-one correspondence has been established between f (¢) and F (s ). Hence
this statement denotes symbolically as

F(t) = F(s) orf(1)&F (s)
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where L ~ ! represents the inverse L oparetor, which is defined as

LL ™ '=L"L=1] 13)
where I denotes a unit element.
1.2.2 Examples of Laplace transforms for elementary functions
1) Now consider Laplace integral L ( ¢” ) for the original function f ( ¢ )= ¢*, which may be calculated by the
change of variable

o _ s=x 1 o _ T'(n+1 n!
L(t")=_[oe S't”dt=w_[oe ’x"dx='—%_—l—)=w (14)
where n + 1 > 0, thatis, #» >— 1. When n = 0, the formula (14 reduces to
1
L(l)==—(0'=1) (15)

The above formula (14) may be shown inductively as follows :

at  ds

dL(l)_d(1)=_ 1
S

—=L(t)=L(1-(-1t))

—-1)! !
o (= 1L ()= (= 1L (e (= 1)

These results show that the differentiation of image function F * (s ) corresponds to the multiplication of the
original function by (—¢).

L(tr-1 )=;:1!+—1=(— 12 (l)

ds®\'s
S - . w 1 1 1
Consider integral fs L (t™) ds with respect to [ Fds =1 1"
o w Nl (n—1)! _ t?
JTL(emas =T omrds=———=L(t" " ")=L(— 18)
This result shows that the integration of the image function corresponds to the division of the original function

by ¢.
When n is half-integer, we may obtain the following formulas

37
1
b r‘(1+7) VT
L(t%)= 3 =
s? 2s%

On the basis of the formula (14), we shall investigate Laplace integrals with elementary functions, like ex-
ponential functions and trigonometrical functions, since they are expanded by power series.
2) Consider the integral :

L(e™a)=[T¢ st~ atgt

The exponential function ¢ ~ % is expanded into power series,

_ (at)®? - ! "
e"¥=1—at+-p—— = 2(=1)—r(at)
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Then, the integral reduces to

L™= E—1yrirznyr=E-1ri

SR Ao ) (]

S\s

That is,

L(e=a)=—1t

= s+a
Of course, we can easily found this formula (18 by the direct integration :

9

1 ® 1
P, st,—at g —|__ ~(s+a)t| —
J-oe € at [ S+lle ]o s+a

In like manner, we have L (¢ % )= Then, we write

1
L(eia)=s$a
Puttinga ==+ ia (i =V/— 1), we have
1
sFia
3) Consider Laplace integrals for trigonometrical functions :

L ( iﬁ’s‘fft )=I:e o ( 222‘2 ) dt 21

s—a’

L(e*u)=

A sine function is expanded by power series
- RV S 2 + 1
sinat = L (= 1)" Tmgyr (@)™
Then, we obtain in terms of the formula (14)

o aZn+l

L(snat)= E(—l)"(—

n=0

a)z(m-n

3

It I S H

In like manner, a cosine series is

1
(2n)!

cos (at )="§°(— 1) (at)™

Then, we have

© " aZn " s
L(cos(at))="§o(—1) oL (2 )="‘=sz+7 &y
The formulas obtained €2 and (3 can be found easily by using the formula (7) with the help of the rela-

tionship ; ¢ * * = cos at + sinat. A sine function is expressed in terms of exponential funcutions
1 . )
singt =—(e™ — ¢~ )
21
Obviously, we get

N ity p(pampn=tf 1 __1
L(smat)—g{L(e') L(e m)}_Zi(s—ia s+ia)

S
52+aZ
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Similarly,
cos at =%( e+ ¢ )
Then, te get
s
T s%4a?
Example. Find Laplace transforms for the following functions.

anvi @ E(—l)ﬂ#(i)”

L(cosat)=

Vi n=0 (n1)2\ 2
Solution.
(1).
2
sm\/_t_t-{_T-i-?_T“.
Consequently, we have
7
2 n 2 1,3 T,
V)= g _rfe)_rl )..._W[l RIEVET b V¥ 0 HA LA
st 3157 5167 957 2% A\ 2% 31\ 25 257

(2).

M:t"}{l_ (t-%-)z_'_(t%-)4 (té—) 6+...}=t‘71'_t_%+ t% t%

Vi

(Cosw)_() (5)_[‘(%)Lm_\/;f1 1 1(1)2_1(1):‘__]:\/7 s

;g U 2 a\a) T

@ 1 [t = 1 2
L(E-1) (n!)Z(?) J=E-1) (n!)z(_) L(t*)

= 1 (1\» [ (2n+1) = (2n)! 1
="§o(_1)" (n|) (?) s2n+l _”E:o( )n 22n(n!)2 sZn-}-l
= L= 1 1 101, 3171, 5311
=L-1) (2n)1t 21T g T 2(33)+4-2\s_5)— 6-4-2\57) '

1 11y 311, 5311 1 1y-r 1
=12l izl -l ) s
This expression denotes Bessel function of digree zero of the first kind.
4) Consider Laplace integrals for hyperboric functions :
a

AR R b L

s%—a?
where
(i?iﬁf:)%‘ e“Fem )
Exercise. Verify the formula 24).

2)
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1.3 Some Properties of Laplace Transformations
1.3.1 Linearity (Scalar Product)
Consider the integral,

L(f(at))=[5e *f(at)at
Substituting at = x, we have

L(f(at))=f§e"%f(x)%=%F (%) i

Using this formulaand L (e )=

1
sT1 Ve may find

Similarly, we have

1
sFia

L(e:tiat)=

In terms of the formula (5, we may show the following formulas given.

1 1
L(sint)= :>L(sinat)=; 5 =

s241

L(cost)=—p— oL (cosat) = =
coS —$2+1 cos a —a (S =

L (sinht)= ! :>L(inht)—l . 2
S T 5241 smhat )=, (i)z_l_s"’—a2
a
L(cosht)=—p—=L (coshat)mrmes oS
cosht)=-—5— coshat )=— (i)z_a_sz—az
a

Here we wish to consider the meaning to the following formula :

1
sTa @6)
That is to say, “To multiplication the original function f (# ) = 1 by e * # corresponds to shift s by s ¥ @ on
the image’s variable.”
The general type of L (e %f(t)) may be given:

L(1)=FandL (e*@)=L(e* o 1)=

L(ei"‘f(t))=f:e"‘{e*“f(t)}dt=f:e‘(‘*"‘f(t)dt

=F(sFa) e
Example. Show the following formulae.

n!
n,taty_—____ "
(1) L(t" ) (s;a)".,.l
b
eX%sinbt \_| (sFa)*+b?
2) L(e*“‘cosbt)— sTa ey

(sFa)®+b?
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Solution.
1) Lt )= and L (6% %) = L (170 % ) =
n+1 an _siFa t” - (s¢a)n+l
L ( sinbt )= b
st s T s24b? (sFa)?+b?
(2) L(e )=s¢a and s sTa
L(COSbt)=sz+b2 (sFa)’+b?
1.3.2 Shifting (Translation)
Consider the integral :
L(f(t=b))=[je=f(t—b)at

On replacing ¢ — b by x, the integral reduces to

L(f(t—b))=[7e x)dr=e¢ ®F(s)
From this result we may state that “shifing to b on the t-axis corresponds to the multiplation of the image
function by e ~ 5. i

—s(x b)f(x)dx=e—MI:e—stf

@9
This means that the role of ¢ ¥ in the image space is played as “shifting operator” or
translation operator”
Example. Find the following formulas

(1) L(f(at—b))=e-%=lp(i)

a

@ Lifla+b)=ret{F(S)=fle ¥ r(x) )
Solution

W Lfla—b) =" Lot tpa=ct (2
@ Lifla+s) =" Lt

- fotrione]

. 1 s, $

ey ety () ax =2 (P

Here we introduce the Heaviside’s unit step function, or simply Heaviside's function H ( t ) defined as
1 —

H(t_b)={ (t=b>0)

0 (t—5<0) #0
Consider the integral :
S o _ .1
L(H(t—b))=[Te " *H(t—b)dt=[]e tdt=e""— 61)
The Heaviside’s function plays the role of a transtional operator. Taking b = 0, that is,
{1 (t>0)
H(t)—{ 0 (t<0),then,wehave
1
L(H(t)=L(1)=7 82
. s w f8)
1.3.3 Laplace integrals for functions ¢” - f( ) and T
1) Consider the integral :
w _ _ Nl
)=J'oe d(fef J‘ e~ ) f(t =___I e 4 (t (s)
Further, generally it follows that

&t =_(F($))'
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d n
L(t"f(t))=(—1)"FF(s) 83
Example. Find Laplace transforms for the following functions.

(1) t"e~® (2) t%inat (3) te” Ycosat
Solution.
(=1)"n! n!
(s+a)n+l - (s+a)n+l

d”(l

(1) L(t"e”*)=(—1)" " \sta

J=(=1)

> | a )_2s(s2—a2)

@ L(t*inat)=(=1Y 27\ 77 )= 757

2_ 2
(3) L(te  %cosat)=(—1 )%( x+b )= (a (s+b)

(s+b)*+a? a’+(s+a)?)?

2) Consider the integral :
LA )=fre-a Mgy fo(fre=stas ) () ar

=f([ze=rCeyar)as=[7F (s)ds
Further, in general form we have

( ) Iw . ) dsds; -+ ds, — (34)
n
Example. Find Laplace transforms for the following functions.
sin at 1—cos at e =¥ L4t
M =5 @ = @ @ efonleT )
Solution.
sinst\ (= @& _1x]°_® _ tan’'s
(1) L( t )_sz-{-az”_[m al,” 2 a
@ LS5 - )= [ — g (57 +a%)] =34 e’ 1, (1+a—2)
; pe logx og (x°+a glog— 7 —=7lg 37

(3) L(e_at:e—b‘);[‘:(xia - x_}_b)dx=[log(s+a)—log(s+b)]j=logz-_::—z

n n n

dt,,(e“t"))=j;°e‘“(e‘i,,(e"t )dt Ie“s—“'(jt,,( "t"))dt

@ Lt

By integrating by parts, we get
=(s—1)f:e_(‘_”‘(

By repeated integration by parts, we obtain

n—1

d
dt,,_l(e_’t"))dt

. al
=(s=1p[re e e dr=(s =1 [re T T mde = (s~ 1P = (1——) -
. ar - _ .
Here the expression Lz ( ¢ )—7e & (e~ *t") denotes Laguerre's polynomials.

1.3.4. Laplace integrals for derivatives and integrals
1) Condider the integral for the first derivative of function f ( ¢ ) . Integrating by parts, we obtain
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L) =Lty (an=frem=r (D a=[e" ()] +s[ie= (1) at==1(0)+ & ()
That is ;
L(f (t))=sF(s)—f(0) @5
where f(0) means f(+ 0 ), which denotes the right limit.
In a similar manner, we have for the second derivative :

L(f"(t)=s%F(s)—sf(0)—f"(0) 36)
We get repeated integrating by parts
L(f"(t)=s"F(s)—s""1f(0)=s*"2f —(0)—f""1(0) @7

Example. Verify the following formulas.
(1) lmsF(s)=lmf(¢) (2 lmsF(s)=lmf(¢)

where F (s )=L (f(t)) and the limit of the function f ( # ) is assumed to exist as ¢ — 0 or { =, name-
ly, 111-{2 f(t)= const. or ‘ll_{g f(t)= const. These equalities are called ‘Initial value theorem’ and ‘Final

value theorem’ respectively.
Solution.
(1) From the definition, it follows that

lmL (f)=limf3e™*f" (£)dt =0
Consequently, s11‘12( sF(s)—f(0))=0. Then, we get
!j_r_r‘llsF(s)=f(0)

(2) From the formula @5,
L(f )=sF(s)—f(0)

imL (f )=lim[Te ™" (£)dt=[3f" (£)dt=f ()= f(0)=lmf(t)=f(0)

Consequently, we get
limsF (s)=limf(¢)

2) Consider the following integral :

L{forte ae)=[rem=(fra) ) te= [~ Lo [op(a) ] 4fsem (0 a=3F ()

In a similar manner, we have
t (e 1
L([y 87 (x) duty )=—5F (5)

In general, we may expect

L

0
[ —

n

I'---I;"_If(x)dxdxl"'dxn—l)= 2F(s) 89

Example. Verify the following formulas.
() L (I;ﬁ;idx )=%ITF (s)ds

@ L[5 )=11F () as
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Solution.
W L2 2for(s)as =L ([, 12 ) 21 f7F () a5
@ 0[5 )1 () [
where

728 i 8 e s [ () a5 ] =[5F () s

Consequently, we have
LB ) =L ([P (s)ds )= +[oF (s)ds =~[7F (s)ds —~[7F () ds =~ 1P (s) ds

Exercise. Find Laplace transforms for the following functions.

—t
f‘ﬂdt @ [ ta ® [
Solution.
2
(1) %(%—tan"ls) (2) —log(;:l) (3) —bg(ss"'l)

1.3.5. Laplace transforms for periodic functions
A periodic function is written
f()=f(t+T) 69
where T denotes a period. Consider the integral :

L(f(e)=[Te stf(t)dt=[Tef(t)dt+[Te™*f(t)at
where

fx+T)=f(x)

I:e—stf(t)dtl-;x:xr:e—s(z*'T)f(x_'_T)dx e—sTJ.‘:e—sxf(x)dx=e—sTL(f)
Consequently, it follows that
(1—e T)L(f)=[Te"f(t)at

Then, the equation reduces to

1
L(f)=mf:e_“f(t)dt )
Example. Find Laplace transforms for the following periodic functions.
¢ 0<t<§
(1) f()=f(t+T)=¢t (2) f(t)=f(t+T)=l T
—c 7<t<T
Solution.
_; T —st g — 1 i e—ST{ 1
1) L(f)_l—e“T of dt_l—e“T{sz s \T+s)}
T © _ ¢ Ts
@ L(f)=y— =7 {f 'cdt+f;_e ‘-—cdt}—?tanh(T)
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1.4 Convolution and its Laplace transformation
Let’s begin the definition of convolution or “ % product”.
g(t) tobe

We shall write that of function of £ ( ¢) and

f*gd—';'fo'f(t—x)g(x)dx @1

Note that the symbol * denotes the convolution in distinction from the scalar product or “ - product” of

functions, that is, f*g ¥ f-g = fg.
Example 1. Let f=g = t. Evaluate the integral for the convolution #% ¢ and compare the result with the

scalar product #+.
Solution.

txt =] t—x)xdx=[tx—%x2];=%t3

tt=12
The difference between ¢%¢ and ¢-¢ is clear.
Example 2. Evaluate the following convolutions, where m and n are integer or real mumber.

(1) t™%t™  (2) e™*xsinnt (3) sinmtkcosnt

Solution.
<1)=I;<t—x)'"x"dx=t'"fé(1-§)m"""‘
Zor
Cim (1= T)m (M) T =t (1= T)"T"dT =" """ B(m+1Ln+1)

This result shows that
'(m+1)T(n+1)=T(m+n+2)B(m+1,n+1)
which is the relation between I’ and B functions given in (8):

B(m+1ln+1l)= F(l.'?(tnlj_g_('_nz-;-l)

@=[lem " sinpxde=e ™ [ eMsinnrdr =™ ™ -(2)

Then, the expression (2) reduces to
’ 1 f 13
(2) =W{ me™sin nt — ne™cos nt + n }
Hence, we have

(2)=—1——{msinnt— ncosnt + ne ~ ™}
miin?

(3)=f;sinm(t—x)cosnxdx=%f;{sin(mt—mx+nx)+ sin ( mt — mx — nx )} dx

mZ

By setting f = 1 in the definition 41), the convolution is written

m
=—_—nz-( cos nt — cos mt )

1xg=[,g(x)dx )

Note that 1 means a constant-function, butt differs from a constant-value as a unit element. It is seen
from the equation @2) that the role of 1 in the convolution is plyed as an integral operator.
Example 3. Show that
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(1) 1%--%1= g7 1
N ——

n

1
(n—1)!

(2) 1k-%1%kg= (n_ll)!j;(t—x)"“g(x)dx

n

Solution. 1
1kl =[ldr =1 1%1%1 =], (t—x) dx =t*

We prove the equation (1) by mathematical induction on n. Taking #» = 2, we have 1%1 = £ On tak-
ing n = k — 1, the equation (1) is assumed to be correct. Then, taking » = k, we may show the equation
is correct as follows.

1 tk—-l
Tkl — ppb—t=ffot pk-2g = L
e 1%1 K =] d =, )
It is seen from the result (1) and the definition of the convolution that
1 : _
w*g=m!—=h(t—x)" lg(x)dx 44
n
The following are the fundamental properties of the convolution ¢1):

(a)fkg=gkf ( commutative law )

(b)f*(g+h)=fxg+ f¥h ( distributive law )

(c)fk(gxh)=(f*g)*h ( associative law )

In algebraic words, the convolution makes the ring.
Now, consider Laplace transformation for the convolution

L(f*g) Ie‘“{jft-x ()dx]dt )

In order to perform the integration in the equation 45, we insert the unit step function H ( ¢ — x ) into the
integrand.

L(fkg)=[Te" {f:f(t—x)H(t—x)g(x)dx}dt=f:g(x){_[:e_“f(t—x)H(t—x)dt}dx
By substitution t — x = T we get
=" %g(x)dx[le " Tf(T)H(T)dt=G(s)F(s)

we write this result as
L(f¥g)=L(f)L(g)=F(s)G(s)
or as the same symbols

fxg %F(s)G(s) or fkg&F (s)G(s)

The above formula shows that Laplace transformation for the convolution is the product of each Laplace trans-
form of f and g.
By using the convolution, the formula 88 is directly shown

LOI%F(£)=L(1)L(f(1)=FF (5)

In a similar manner, we have

1
L(fifor(x) dumy = L(1%1%f)=—3F (5)
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In general, we get

t -1 1
L{[y[e™" f(x) dudry -, -y |=—5F (s)
n

1.5 - Delta function and Its Laplace transformation

This section gives Laplace transformation for the delta function, which is denoted by & . The theory of
the delta function, which is often called generalized function, was given a rigorous foundation from distribution
and hyperfunction once. We treat it by means of the simplified model, but, the results obtained hold correct
even in the regorous theories.

We consider a following rectangle function

¢ (a<t<b) . e ~
0 (t<agt>p) @ f(Da=[Zr)a=1

A problem is that evaluate L ( f( ¢)) and zlﬂ(i’(‘t)—)—) . Inordertofind L (f(¢t)), we write

f(t)={

f(t)=c{H(t—a)—H(t—b)}
Atonce, L ( f(t)) may be given from the formula (2)
1

L(f(t))=c?(e""-e"")

Substituting b = @ + h and making & — 0, we have

lim(%)=c%e‘”{l —(1—hs+-)}=ce™

Here we assume that the operations of the limit }l_rg and the Laplace transformation L are commutative.

h—o0

Then, we have

- (LU (. A . H(t—a)—H(t—b)\ dH(t—a)\_ _,
fm( =)= £ {im )= e (jm 7 J=a (S =e
Then, we define dlgt) by ¢ :
dH(t—a) _ _
—g =0(t—a) &)
In words, the differentiation of the step function gives the delta function. Then, we get
L(o(t—a))=[le—6(t—a)dt=ec* )
Putting ¢ = 0, them, we have
LB )L (s ()=freso(t)a=e"0=1 e
dt 0
' o dMTH(—e) (0)
Example. Find Laplace transforms for derivatives, —dt;,rl—-=8 *"(t—a).Forn=0, ¢ means ¢ .
Solution.
—,— s d _l —st — e —Sa iz_ _ d_2 - st — o2 —sa
Ls(t-a)=e = L(gat=a)|=gle )| _=se = L{zz8(t-a))== ()| =5

n

LGt —a))=(—1)"sm ==
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When a = 0, then, it follows that
L(8"")=s"

and
L(6'9)=L(8)=5s"=1

1.6 Error function and its related Laplace transformations

Error function is defined
2 .2
Erft =WIO' e dx @9
and complementary error function is defined
2 e _,2
Certt = 1 — Erft =WI‘ e ™% dx 60
1) Consider the integral ;

L(Eﬁt)=%f§°(ﬂe"’dx)e"‘dt=%F(s)

where

2

. gz 2 L2 2
F(s)=\/7j.oe_'2e_s‘dt=e17) (%)

02 $\2
\/—f:e_'”’) dt=e \/;I:"e_‘zdx=e(7) Cerft

T

Hence, as the formula it is given
L (Extt)=+{ o Cert 61
2) Consider the integral
L( Erf\/7)=%f:(.|‘;ﬁe — 24y ) e~ Sdt

By integration by parts, it follows that

= 2 Vi g2 - 2 1o 1 —t, — st

‘\/7“0" d ]o+\/7$ voyit ¢ ¢

L fafee g L VE
s\m o0 Vi sV Vs+1  s\Vs+1

Then, we have

S

1
L(Erf\/_t)=m 62)

Form these results, the following formulas may be obtained

1
- _
L(e El'f\/-t) (S+1)\/S_+7 (53)
1
t =
L(e'EdVt) oDV 64
By the use of the definition, we get

1 1 1
L(Cert VE)=L (1= B Vi) =~ e =51+

From this, the following formulas are given

_ _ 1
L(e ‘CeﬁW)—M(m+l) (65

1 1
L (e Cet V)=o) ~ e v 6
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3) Consider the integral

%(m%)a:u?e-xw)e-sw=[f?e—xwx e VLI

S

||~|...

l - x 1 (o —(u2+ ) 1 \/_ 1 \/_— —2\/s
v gl T = - e Y

where the following integral formula is used

[T -z g, ——\/— (a,bc>0)

Consequently,
T
Then, we have

(Cerf\[t) (1—Erf%)=%_%(1_%‘3-2%):_21?[2\/;
In a similar manner, we have

1 _.vs
(g =2 (- o)
By differentiating with respect to the parameter g, the followings may be obtained

L(\/ln—t e‘°'2)=%e"“; 69
and
L(—l—i—e_%‘i)=e—“/; 69
2Vr t?

2 Applications of Laplace Transformations

2.1 Ordinary Differential Equation

We consider here an application that is in particular related to the solving differential and integral equa-
tions. It is convenient for the solving to utilize the Laplace transformation of the convolution and the delta
function.

An important differential equation of general typa, which is known motion of equation or Newton's equa-
tion, is

d?(t)
dt?

where unknown function y ( #) and given function F ( ¢ ) are a displacement and external force dependent on
time-variable ¢ respectively and m, mass of a particle, is a constant.

In order to solve the differential equation (1) by the method of Laplace transformation, we may proceed

=F(t) (1)

as follows :
step (1). Make the differential equation Laplace transformation
step (2). Solve algebraic equation as a function of the parameter s
step (3). Find solution by inverse Laplace transformation
We shall illustrate the above procedure by some examples. First let us take equation (1) as an example :
step (1):
m(s2Y(s)—s(0)—y (0))=F(s)
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where Y (s ) and F (s ) are image functions of y (¢) and F (¢ ) respectively and y (0 ) andy’ (0 ) are
constants of the initial condition.

step (2) :
’ F 1
Y(s)=&+y (:))_'_ (s) L @)
s s m s
step (3):
L= (Y (s)=3(£)=3(0)=y" (0)t+otkF (1) (3

We shall distinguish between F ( ¢ )= 0 and F ( t ) 0, which are called the homogeneous system under
differential equations and the non-homogeneous one, respectively :
@ F(t)=0:From (3) a solution is written
y(t)=y(0)+y"(0)¢t
Then, the velocity of a particle v ( ¢ ) is the derivative
y' (t)=v(t)=9"(0)
which represents the motion of uniform velocity or the law of inertia.
() F (t)+ 0: When F (¢t )=— mg, where g is what is called the gravitational constant, a solution is
written from the equation (3)

y()=y(0)+y" (0) 1 =542 @)
Ify(0)=y"(0)=0, then,
y(1)=—5¢2 (5)

which is well-known the formula for free fall. Then, the accelation is the derivative of the velocity
3y’ (0)=v'(t)=—¢g
which represents uniformly accelerated motion.
As is seen from the above procedure, a merit of the method of solving differential equations by Laplace
transformation is that if nessesary, either of the general solution and the special solution with the initial condi-
tion may be chosen in solving process.

Example 1. Solve the following differential equation :
" d%(t) dy(t)

ar Ty (6)

where the term mc—% is due to medium resistance, which is assumed to be propotional to the velocity of a

particle and mc is a constant coefficient of damping force.
Solution
step (1) :

m(s2Y(s)=9(0)=y (0))=—mg—me(s¥(s)=y(0))

s(s+c)Y(s)=sy(0)+y’(0)+cy(0)—g%

step (2) :
_0) ¥ (0)+¢y(0) 1
Y(s)_s+c+ s(s+c) 85 %(51¢) (6)
step (3):
L Y (Y(s)=y(t)=9(0)e “+(y (0)+ey(0))X(1%ke™)—g(tke™ ) (7)

Ify(0)=y"(0)=0, then,
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g

() =—g(tke~)=—g[l(t—x)e~=de=—5{t-L(1-c") ®

2
It is obvious that when ¢ = 0, the solution refers to the formula for free fall, since ¢%1 = 1%¢ =t7.

The velocity v ( ¢) is the derivative :
%=}"(t)=v(t)=—%( 1+e™ )
so that
v(t—oo)=— %= const.
which is called “terminal velocity”.
As a second example, we shall solve the following differential equation :
mf%+ky(t)=F(t) ©

which is called a differential equation for forced vibration. The term ky (¢) means restoring force and kis a
spring constant. Upon rewriting, the equation (9) reduces to

2
ddyt(zt)+w%y(t)=F(t) 0
where \/I= w,, which is called proper frequency of the system and F ( ¢ )( F(t) =LF (t)] isare-
m m
newed function. Let's solve the equation (9) as in proceeding procedure
step (1):
{s2Y(s)—s(0)—y (0)}+wdY(s)=F(s)
step (2):
Y(s)=sszy-f-(2§ syz-l(-(t)v)% sziw%‘n(s) )
step (3):
L"l(Y)=y(t)=y(0)cosw0t+y,(0)sinw0t+—-1—sinwot*F(t) 12
Vo Vo
(@ F (t)=0: A solution is
y(t)=y(0)coswot+y’(0) sinwg ¢ 1)
Vo

which represents the motion of simple harmonic vibration (oscillation).

Example 2. Solve the differential equation (0) under the following restricted condition, y (0)=y(a)=
0, which is called the boundary condition.
Solution. With the use of the restricted conditions and the solution (13), it follows that
y(0)=0

(0
y(a)=y\/(w—o) sinwya = 0

Consequently, we obtain
nm

Wo =——
" a

which is called proper or eigen, frequency. In a limited sense, the integer n is called discrete eigen value.
Then, the solution is written
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(t)_y’(O) LI L
YT N T

which is called an eigen function for the eigen value n and the constant ¢ is determined under the normalization
condition.

G F(t)+0:Ify(0)=y"(0)=0andlet F (¢) be F coswt, where F is a constant, a solution due
to the external force is written

(£)= 1 . t%F t—FJ"‘ (t—x) xdx——F il .(w+wo‘), w—wo‘)
y t —Wsmwo cosw —\/“70 o Sty X ) cosw. _\/Fo wg_w(z)sln 2 1 2 1

When w — w,, which brings about resonance phenomina, a solution reduces to
t —~

(t)"= tsi t oo
= —
y 2 ,—wo SINwWo

In order avoiding divergent solution, a damping force may be taken into account in the equation (10):

d%(t t
dyt‘z)+zc%+wgy(t)=p(z) "

where a factor 2 is meaningless, only for convenience. By ordinaly procedure, a solution may be written

y(£)=y(0) e~ “cos VT = g2t + 202000 —0(0)
0 Vw3—c?

1
Xe_"sinVw%—czt'l'We_"sinVw%—czt*F(t)

o—

A solution due to the external force F ( ¢ )= F coswt may be written
¥ ( t)=Le'“sinV w3 —czt*coswt=LJ"e_“sinV w3 —c2x cosw(t—x)dx
when ¢ —co , the terms with damping factor ¢ ~ ¢ vanish. The remaining terms are

t = o p—

inwt + %o t
m 3
2t (w—wg)? T2 (w—wg)? OV

msb(wt-i—?‘)

2.2 Solving method by the use of delta function
In the previous section, we have practiced solving differential equations by the method of Laplace trans-
formation. In this section, we like to find solving differential equations more systematically by Laplace trans-

d
formation with the help of the delta function. From here, ordinary differential operators o n=01, 2

...... ) are denoted by D" for simple desription and in particular D° means I, which denotes the unit operator D°
f=If=f

Putting F (¢ )= & (¢ ), which represents an impulsive force at £ = 0, in the motion of equation (1), it
reduces to

mD?*u (t)=28(t) (15)
According to the same procedure as before, we shall solve it :
step(1):

m{sU(s)—su(0)—u’(0)}=1whereL (&)=1
step(2):
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1 /%0 u’ (0 1
U(s)=—(—(l+—% +—
m s ms
step(3):
_ 1 1
L YN U(s)=u(t)=—(u(0)+u’"(0)t)+—t
m m
Formally, when % (0 )=u’ (0 )= 0, then, a solution is written
1

u(t)=—”7t 16

Such a solution due to an impulsive force is called “impulse response” or “ & response” for simplicity. It
should be noted that a similar solution may be obtained for the differential equation,
mD?%u (t)=0
with the intial conditions: % (0) andu’ (0) = 1.
Example 1. Find solutions for the following differential equations with initial conditions.
(VDu=68,u(0) (2Du=0u4(0)=1
Solution.

sV ()= (0)=sU (s)=1, U (s)=—, u()=H (1)

(2)sU(s)—u(0)=sU(s)—1=O,U(s)=-1—,u(t)=H(t)

Note that the general solution for Du =¢& isu (¢)=H (t)+c (c = const.).

Example 2. find solutions for the following differential equations :
(1)Dy+y=0 (@Dy+y=H(t) B)Dy+ty=t
Solution.
_ _y(0) 1
1)sY—y(0)+Y=1, Y—_—S+1 + o
1 30 1

Ly (t)=y(0)e "+

—_ _— = = —t —t
(2)sY—y(0)+Y s,Y s+1+s(s+1)’y(t) y(0)e f+e %1

_ L, 1 - g -t
(3)sY y(0)+Y—sz,Y—s+1+sz(s+1),y(t)—y(0)e +e Pkt

Now, consider the relation between the solutions « (¢ ) and y (t), which is the solution for mD? ( ¢ )
= F (t) with the initial condetions : y (0 )=y’ (0 )= 0 (see the previous section). From a comparison
between  (#) andy (¢), the solutiony (¢) may be written

y(t)=u(t)*xF(t)=[lu(t—x)F(x)dx 17

1
As an example, putting « (t)=7tandF (t)=— mgin (7, then, we have

= __ &
y(t)—mt*( mg)=—g(t*1)= ot (18)

which corresponds to the solution for free fall given in (5).
The statement (17) may hold in general : If a solution for kgo @ D* (t)=20(t) has been known, a
solution for k§0 a,D* (t)=F (t) may be verified in terms of the convolution

£ aphy=2 aD*(uxF)=L (a,D*u*F)=8%F=F(t)

As an alternative way of statement, a solution for the non-homogenious system of differential equations
may be represented formally if the solution due to an impulsive force, namely, the impulse response has been
obtained.

According to the above statement, we shall find the solution for mD% + mcDy =— mg withy (0) =y~
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(0 )= 0. First, solve the differential equation mD?% + mcDy =& withu (0)=1%"(0)=0. Its solution is
written

1 1 1 .
U(S)=;s(s+c),u(t)=;1*e t
Then, it follows that
1
y(t)=u(t)*F(t)=;{l*e"‘*(-mg)}=—g(1*e"“* 1) (19
=—g(tke ) 20)

Example 3. Find solutions ( & response) for the following differential equations with the inital conditions :
u(0)=u’(0)=0
WD+ wdu=6 2)D%u+2Du+ ugu=2
Solution.

(I(s2U(s)—su(0)—u (0)+udU(s)=(s2+uwd)U(s)=1U(s)=1,
U(s )=T1w§, u (¢ )=ﬁsinwot
(s (s)—su(0)—u’ (0))+2(sU(s)—u(0))+ugU(s)=(s2+2s+ud)U(s)=1
1 1
TtV g e Ve
By using these solutions and the formula (17), we can easily give the solutions for the differential equa-
tions,
D% + wdy=F cos wtor D% + 2cDy + wiy = F cos wt
Here, we shall introduce new functions and simplify the description. As is seen from the Examples 2 and
3, an algebraic equation solved as a function of the parameter s after Laplace transformations of differential
equations in quastion, may be written
step (1)
G(s)Y(s)—Go(s)=F(s)
where the terms G (s ) and Gy (s ) are polynomials of the parameter s. The degree of the polynomial G
('s) is always heigher than that of Gy (s ) in general. The term “G, ( s ) ” depends on values of the initial
condition. When G, the solution Y ( s ) for s reduces to
step (2)

U(s)=(

1
Y(s)=m{60(s)+[~‘(s)}

Hence, in terms of L ~ ! transformation the desired solution y ( ¢ ) is

step (3)

g (=L s LT (G (s D+ LT R (s )= (L (Go(s+L™H(F (5]} @)
When G, (s )= 0, the solution may be written again

y()=u(t)*F(t)=[ju(t—2)F(z)dx 22

That is to say, “to find the solution y ( #) is to write G (s ) down”. The from of “G (s )” is determined

by the proper claracter only in the differential equation in quastion and the equation about G (s )= 0 is called

“characteristic equation” in the ordinary linear differential equation theory. ﬁ is called transfer function,
- 1 e

denotedas W (s ), and L ~! (G*(s)) is “impulse response” ( & response ) as known.

As a summary until here, We shall solve the general type of ordinary linear differential equations of the
second order

aD% (t)+bDy(t)+ ey (t)=f(t) @3
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where the coefficents a, b, ¢, are real. As in preceding procedure, a desired algebraic equation as a function
of s may be written

G(s)Y(s)=Go(s)=F(s),Y(s)= ){Go s)+F(s)}

where
G(s)=as?+bs+c;Go(s)=ay(0)s+ay’ (0)+by(0)

It is said that it is enough for the solving equation to evaluate f(ls_): T(s)

According to conditions of the discriminant D = b % — 4ac of the quadratic function G (s) we have to
consider solutions for three cases, thatis, D >0, D =0, D <0.
(1)D > 0. The quadratic function G ( s ) may be factored
G(s)=a(x—a)(x—8)
where @ , B are two different roots of G (s )= 0:
( a )= —btVbi—dac _ —b+VD
B 2a 2a

Hence, the solution ?(ls—) may be written
1 1
u(t)=L‘1(as—))=AL—l(s_la )+BL‘1(s_p )
= Ae! + Be®! @4)
where A and B are new constants.
(2)D=0. Asin (1),
G(s)=a(zx—a)?

where a = ——2% are equal roots of G ( s )= 0. Then, we have

u(t)= At @9
where A is a renewed constant.
(3)D < 0. The G (s ) may be factored as
G(s)=a(z—a’)(z—8")
where a’, B’ are two imaginary roots of G (s )= 0.
( a’ )= —btivhi—dac _ —b+i\/D
B’ 2a 2a
Then, the solution # ( £) is
u(t)=Ae"+Be?" 26)
where A and B are renewed constants. In the real form of the function % ( ¢ ), it follows that
w (1) = Ae3 " tsin VBT = dact + Bre %" cos VBT = dact
Examples 4. Solve the following differential equations with initial conditions ; y (0)=y"(0)=0.
(1)2D%+3Dy+y=¢& (24D%—4Dy+y=2¢
(3)2D% +Dy+3y=2¢
Solution. L
G(s)=(2s+1)(s+1),y(t)=202"+e"!

(206G (s)=(2s+1)2y(t)=te 2

ﬂ,)

——t + B’co 2
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2.3 Simultaneous Differential Equations
Instead of the solving procedure of the differential equation (1), by introducing new function v (t) we shall
solve the following system of differential equations of first order.

{ mDy (t)=v(t)

Dy(t)=F(t) €7
Of course, the solution obtained is the same one of the equation (1) since two equations are identical. As
previously,

m{sY(s)—y(0)}=V(s)
sV(s)—v(0)=F(s)
These equations reduce to
msY (s)—V(s)=my(0)
sV(s)=v(0)+F(s)
Eliminating V (s ) from these equations, we obtain the relation
(0) ,v(0) 1  F(s) 1
s Tm 52t m s?
This equation is formally identical with the equation (2), since » (0 )=my" (0).
It is more convenient for finding solutions to write the equation @7) in the matrix form:

(ms —1)(Y(s))=A(Y(s))=(vmy(0) )

2

Y(s)=2

0 s Vis) V(s) (0)+F(s)
where the matrix and its determinant are
_(ms —1 _ _ms —17_
A—(o s )anddetA—IAI—[0 s]—ms
The solutions Y (s ) and V(s ) are given simultaneously by using Cramel’s formula
[ my(0) —1]
_Lo(0)+F(s) s _y(0) ,v(0) 1  F(s) 1
Y(s)= det A =5 tTm Tt m 5%

and [ms my(0)

0 v(0)+F(s)] = {0(0)+F(s))

Vis)= det A

we shall further examine the above solving method in the following examples.

Example 1.
m{mDy(t)=v(t) (2){Dy(t)=v(t)
Dy (t)=—mg—mcDy(t) Dv(t)=—udy(t)+F(t)

These equations (1) ans (2) correspond to the equations (5) and (10) respectively.
Solution.
(1) A desired simultaneous equation may be written
{msY(s)—V(s)=my(0) 1
mesY (s)+sV(s)=v(0)+mey(0)— mg—

s
In the matrix form,

—14(¥(s) (s) (0)
(e “SNv sy 1=l v )=( v(o)+m':;y(3)-mgsi

=( ms
mcs
The solutions Y (s ) and V(s ) are given by Cramel’s formula

where

_sl)anddetA= | A |l=ms(s+¢c)
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my(0) 1 -1 ]
yoyot OO S 0, 0 4mo0) 0
det A s+¢ | ms(s+c) s2(s+c)
and i
ms my(0)
| mes v (0)+ mey (0)—mg— 2(0) 1
Vis)= det A Tsc " s(s+0)
(2)
{sY(s)—V(s)=y(0)
wiY (s)+sV(s)=v(0)+F(s)
Here,
A=(ws(2’ Z’g)mddetA= | A | =52+ ud

The solutions Y (s ) and V(s ) are given

[y(O) v(0)+F(s)]

-1
Y(s)= —— =z (7(0)s+0(0)+F(s))

and
[ s y(0) ]
w§ v(0)+F(s)
det A
Consider an interacting system of simple harmonic oscillations, which is called “coupled oscillation”.  Each
equation of motion for the particles, 7, and m, is
{mlDzJ’l ()=—rky (t)+ K (3 (t)—5n(t))
maD?, (t)=—hy, (t)— K (3 (t)— t))
where K | y, — % | is the interaction term, which is assumed to be proportional to the difference between
the displacements of two particles 7, and m, (K = const.).
In the following, we assume for simplicity that m; = m, = m and &y = k, = k. Then, the equation B0
reduces to

=sziwg{v(o)+F(s)—y(0)wﬁ}

Y(s)=

60

{Dyl(t)=—w%y1(t)+k2(yz(t)—y1(t)) -
Dy, (t)=—wdy, (t)— k% (3 (t)—y,(t))
where w} =-ﬁl— and k? =—I"(T As usual,
{(s2+u13+k2)Y1(s)—k2Y2(8)=y1(0)s—y’1(0)
— k2, (S)+(s2+ud +k2)Yo(s)=3(0)s—y"(0)
where L (3, (¢))=Y;(s) and L (3, (t)=1Y,(s). Then,
___(sz+w§+k2 — k2 )
— k2 s+ ud+k?
and
detA=|A|=(s?+ud)(s®+uwf+2k?)
Then, it follows that
_ 1 1 1 1
Gs)=L7" |A|)=Zk (ﬁwﬁ s2+wﬁ+2k2) 62

The solutions Y (s ) is written
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[yl(O)—y'l(O) —k? ]
v o2 (0)=5a(0) s+ ub+h?)] (% rubth? (00— s0)) +h ul0)sy o0)
1= det A det A
Hence, the required solution is

yx(t)=L‘1( '}” )*(A32+Bs+C)

where the constants A, B and C are
A=5(0)—31(0), B=k5(0),C=(wd+k){5n(0)—31(0)}—y>(0)k?
Another solution is
[sz+w§+k2 yl(O)s—y’l(O)]

L -k 32(0)s—y’(0)
Y. (s)= det A
- {s2+wi+k 3 {0(0)—y"1(0)} +&¥{3:(0)s—y 2(0)} Y, (s)
det A =T hnts

2.4 Differential Equations with Variable Coefficients
Consider the solving following differential equation of the second order with polynomial coefficients
(at+b)D%(t)+(ct+d)Dy(t)+(et+f)y(t)=f(t) 63
where q, ...... , f are constants.

By solving differential equations in terms of Laplace transformation, the degree of polynomials of variable
coefficients has to be less than (or equal to) the order of derivatives of differential equations because of trans-
formation formula for derivatives.

As in proceding procedure of solving differential equations, the equation transformed may be written

[~ 8)(s27(5)=9(0)=y (0 +(~ oot d)(s¥ ()= 5 (0))+(— et /) ¥ (5)=F (5)
and is reduced to
—(as?+es+e)Y (s)+{bs?—(2a—d)s—c+f}Y(s)
+{by(0)s+ay(0)—by’(0)+ady(0)}=F(s)

This is the differential equation of the first order with respect to the function Y (s ) , the solution of which
may be wuitten

. _{bsz—(Za—d)s—c+/ _{ bs’—(za—d)s—c-rf} .

Y(s)=e_fe W}ds ‘[eJ.te Feste
by(0)s+ay(0)—by *(0) +dy(0)
X(F(s) as’+cs+e )ds+c} 69

where assuming that ( as? + ¢s + ¢ ) # 0. Hence, the solution of the original differential equation is given
y(t)=L~'(Y(s))

Example 1. Solve the following differential equation with the initial condition, y (0 )= 1.
Dy (t)+Dy(t)+(t)=0

Solution.

—%(sz}’(s)—sy(O)—y’(0))+sY(s)—y’(0)—%Y(s)=0, —(s2+1)Y’(s)=sY(s)
1.2

Y(s)=—m—,y()=L"1(Y(s)) = J(t)
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where ¢ = 1 by considering the initial condition, y (0 )= 1.

Example 2. Solve
tD% (t)+(1—¢t)Dy(t)+ny(t)=0 (ninterger)
Solution.

—d (52 ()= 9(0) =3 (0N +[1+-5)(s¥ (s)=3" (0)+ ¥ (s)=0

—(s2=5) ¥ () H(—s+1+m) ¥ (s)=0; ¥ (5)=(1 ) "+ <> e a(e™1t7)

2.5 Partial Differential Equations
Let x and y or ¢ be variables and let % (x, ¢) or u (%, ¢) be an unknown function. The standard form
of linear differential equations of the second order with constant coefficients will be taken to be

022 +c—a—22-+d—+e—+f) (£,y)=F(zy) 89
ox ox3y ay ’
where the coefficients g, ...... , fare constant and F ( x, y ) represents a non-homogeneous term (an external

force ) . This equation 35 may be classified according to the discrinant D = 5% — 4ac, which is similar that to
the quadratic equation :

(1) When D < 0, it is called “partial differential equation of elliptic type” (2) When D > 0, it is called “partial
differential equation of hyperbolic type” (3) When D = 0, it is called “partial differential equation of parabilic
type”

Hereafter, we shall treat three typical differential equations in the field of mathematical science nad engineer-
ing. Thatis;
2 2
W (Zr+Sr)ulxy=0 (D<0)
2 2
@ (Zr-c*2r)ulx)=0 (D>0)
2
®) (27— c*2z)ulxy)=0 (D=0)
which is called (two-demensional) potential, (one-dimensional) wave and (one-dimensional) heat equations, re-
spectively. We introduce here the notations for differential operators for convinience in writting ;
W) a=-2rt2y; @ 0222y (1) O=2p— 227
ox oy°’ ot ox°’ ot ot
The notations 4, (1, and  for differential operators are called Laplacian, d’Alembertian and Fourierian,
respectively.

1) Solve the following one-dimensional heat equation
oul%y) _ 22 u(x. y)

ot 527 0
with boundary and initial conditions
u(0,t)=u(L, t)=0 (36)
and
T
u(x,0)= sin % @7

Physically, the solution  ( %, ¢ ) represents the heat distribution at any place and time, (x, ¢). These
conditions 36) and 37) mean isothermal conditions at both sides, x = 0 and x = L and initial distribution of heat
at t = 0, respectively.
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The solving procedures are the following :
step 1: Transform the parital differential equation to the ordinary differential equation by Laplace trans-
formation with respect to the variable ¢,

ou(x,y)  , d%u(x t)\ _
L ot ¢ ax? J=0
where
Li(u(xt))= )=[Te " tu(x t)adt 69
Consequently, the equatxon reduces to
2
7 Uz, ’7)_“("’0)_02%7]_):0
Then, we get
2
7 U (1, 7)—02%7—)=sm%x

step 2 : Find the solution of the ordinary differential equation with respect to the variable x, regarding 7
as the parameter. As in proceding procedure,

L,(rl U(x, 7)—c?
The algebraic equation with respect to the parameter & may be written

T
U(E, )= e (&2 (€, 1)=8 U(E, 1)=U" (0, 7))= —E——
e2+(7)
The solution of the algebraic equation may be written
T
_cU0,7) 1 L _cW(07) =« 1
Ue¢,n)= ,7_cz$r+ T—cZe? ot (L)"’_ T —c?¢? +T72+(ﬁ)2
L L

e ez

Here the solution of the ordinary differential equation may be written by inverse Laplace transformation
=1 — __ ’ \ \/— \/_ 1
(U, 7)=U(x7) u.(o,7) p sinh L(ﬁ
L

)2+7/

b5

Here the constant coefficient U ‘x ( 0, 7 ) may be determined by considering the boundary condition at x = L,
, - _ 1 . x
U,.(0,7)= L(frc)z sinp-x
T/t
Consequently, the solution of the ordinary differential equation reduces to
1
U(x, 7)= e,
() +7
step 3 : The desired solution of the partial differential equation may be obtained by inverse Laplace trans-
formation

.o
in——
S| L x

nc

L™HU (5 1) =ulzy)=e (1) s s
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2) Solve the following one-dimensional wave equation.
dfux t)  , d%u(x t)

at7 ¢ T gx7 0
with boundary and initial conditions
u(0,t)=u(L, t)=0 69
and
du(x, t)

u(x,0)=sin%x¢md——dt— =u’,(x,0)=0 @0)

t=0

Physically, for example, the solution « ( x, ¢ ) represents the vibration of string fixed at both sides with
initial displacement and intial velocity.

step 1 : Transform the partial differential equation to the ordinary differential equation by Laplace trans-
formation with respect to the variable £.

2 2
L[S 120

Consequently, the equation reduces to

2
720 (5, ’7)—c2d—l{1x(xé77—)=77 sin7

step 2 : Find the solution of the ordinary differential equation with respect to the variable , regarding 7
as the parameter. The solution of the algebraic equation may be written

I . ™7 1
U($,’7)—72_—cz?2'[—c2U,(0,7)+ 7 $2+(",7)2}
L

Here the constant coefficient U “x ( 0, 7 ) may be determined by considering the boundary condition at x
= L’
L 1
R

Consequently, the solution of the ordinary differential equation may be written

v,(0,7)=

1 .
U(x, 7)=7 Twey. L, L*
)+
step 3 : The desired solution of the partial differential equation may be obtained by inverse Laplace trans-

formation
LY U(x ’7))=u(x,y)=cosLLc—tsin%x

3) Solve the following two-dimensional potential (Laplace) equation.

%u(x, y) | d%u(x y)
227 T ayz 0
with boundary and initial conditions
u(0,y)=u(L y)=0 : @1
and
LT du(x,y) , _
u(x,0)=smede‘y=o=u,(x,O)—O 2

step 1 : Transform the partial differential equation to the ordinary differential equation by Laplace trans-
formation with respect to the variable ¢
d%u(x, y)  d%u(x )
Ly a x 2 a y 2
Consequently, the equation reduces to

J=0
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d*U(x, 1)

72y (g, 1)+ 25T g Gn
2 & L

step 2 : Find the solution of the ordinary differential equation with respect to the variable x, regarding 7
as the parameter. The image solution of the algebraic equation may be written

5 2 + _”_
Here the constant coefficient U “x ( 0, 7 ) may be determined by considering the boundary condition at x
= L,

U(e,n) ?ﬁf{—uw(o, '7)+%—7m2]

U0, 1)="" _(L}Hz
L

Consequently, the solution of the ordinary differential equation may be written

1 .
—————sin—Gx
[T \2 2 L
() +7
step 3 : The desired solution of the partial differential equation may be obtained by inverse Laplace trans-

formation

U(x, 1)=7

Ly " (Ul(xy ))=u(x,y)=coshiysian
L L

2.6 Integral Equations
Return to the definition of Laplace transformation

=[Te=f(t)at
As for this equation, given F (s ) and determining an unknown function f ( ¢ ) , the equation is called integral
equation, that is to say, an integral equation is one which involves an unknown function under the symbol of in-
tegration. The process of determining the unknown function is called solving the integral equation. A solu-
tion of the above integral equation is given formally by

f(t)=

This is the inversion formula of Laplace transformation or called Bromwich’s integral formula.
Forms of integral equations treated here are the followings :

[ie(t—x)y(x)dx=f(t) @

1 ati
Y ETh lim [277¢F (s)ds (a>0)

and
y()—[ik(t—x)f(x)dx=f(¢) )

where the notation k& ( ¢t — x ) is called a kernel of integral equation, simply, an integral kernel, and y ( ¢) and
f(t) are unknown and given functions, respectively. These equations are integral equations of convolutional
types or are called integral equations of Volterra's types of the first and the second kinds respectively. The
solvings of two integral equations #3) and ¢4) will be considered together.

Solving procedure, as in solving differential equations, can be illustrated below.

step 1. Render both members on the equations Laplace transforms

L{fie(t—x)y(x)ds)=L(F(N||L (s (O)=fk(t=2) () ax)=L(f(1))

By convolutional formula it follows that
K(s)Y(s)=F(s)|l{1—=K(s)}Y(s)=F(s)
step 2. The solutlons of algerbaic equations are
F(s)
Y 1.k (s)
step 3. Then, the solutions of integral equations may be obtained by inverse Laplace transfomation
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1 (F(s) o F(s)
=L l(K(s)) y(t)=L l(1—1((5))
_ 1 _ _
=flael l(K(s>) =/()*L l(l—K(s))
Example 1. Solve the following integral equations.
<1>I;jf’_—)x =t @y(t)=[(t—x)y(x)dx=t
Solution.
(1) (2)
1 1 1
\/?Y(s)=s—2 Y(S)—s—zY(S)=?§-
1 1
Y(s)= —r\/_sz Y(s)=$2_1

y(t)=L~1(Y(s ))—\/—tz y(t)=L~'(Y(s))=sinht
Example 2. Solve the following differential-integral equations under the initial condition, y ( 0 )= 0.
. ¥ (%) .
1 = 2 - — ’ =
()L,V— t @y()=[ (t—x)y (x)dc=t

Solution.
(1) (2)
\/Z(sY(s)—y(O))=Lz Y(s)—iz,(sY(s)—y(O))=i2
s s s s
4 1
Y(s)=m— Y(s)=s(s—l)

(=L ¥ () =gr=ti  y(D=L7N(¥(s)=14e 1=e =1

Exercise. Find the solutions for the following integral and differential-integral equations.

=t"  (@ficos(t—x)y(x)dx=s(t)

(3)I;%dx=t" (4)I;cos(t—x)y’(x)dx=f(t)
Solution.

1
Wy (D= DBt Ll T @y (0= f () +fif (x) e
l"(n+?)
3
@y (==Lt L3 @y ()= p7 (1) 4 £(0)

" r{n+g)



