L^p-convergence of an extended stochastic integral

by
Toshitada SHINTANI *
(Received, 15 November, 1994)

Abstract Let $1 . Let <math>f = \{ f(t), \ 0 \le t \le 1 \}$ be an L^p -integrable martingale and $v = \{ v(t), \ 0 \le t \le 1 \}$ a family of random variables with a continuous parameter t. Suppose $|v| \le 1$ in absolute value and that v(t) is continuous. Put

$$\theta_{m} = \sum_{k=0}^{s_{m-1}} v(\xi_{m,k}) [f(t_{m,k+1}) - f(t_{m,k})].$$

Here, $\ \forall \ \xi_{\ m,\ k} \in [\ t_{m,\ k},\ t_{m,\ k+1}]$, $k \ge 0$, and $\max_k \ (\ t_{m,\ k+1} - t_{m,k}) \to 0$ as $m \to \infty$.

Then θ_m converges in L^p and θ_∞ defines a new stochastic integral $\int_0^1 v(t) df(t)$.

Let (Ω , a, P) be a probability space and $\{a_t\}_{t\geq 0}$ a nondecreasing family of sub- σ -fields of a. Let $f=\{f(t),\ 0\leq t\leq 1\}$ be an L^p -integrable martingale where $1\leq p\leq \infty$ on a probability space (Ω , a, $\{a_t\}$, P) and $v=\{v(t),\ 0\leq t\leq 1\}$ a family of random variables with a continuous parameter t. Suppose that $|v|\leq 1$ in absolute value, v(t) is continuous and v(t) is a_t -adapted.

Let $\Delta = \{\Delta_m\}$, where $\Delta_m = \{t_{m,\ k} \colon 0 = t_{m,\ 0} < t_{m,\ 1} < \cdots \cdots < t_{m,\ s_m} = 1\}$, be a sequence of subdivisions of $[0,\ 1]$ with $|\Delta_m| = \underset{k}{\text{Max}} (t_{m,\ k+1} - t_{m,\ k}) \to 0$ as $m \to \infty$. Here notice that if $m \uparrow \infty$ then $s_m \uparrow \infty$.

Put
$$\theta_m = \sum_{k=0}^{s_{m-1}} v(\xi_{m,k}) [f(t_{m,k+1}) - f(t_{m,k})] (\forall \xi_{m,k} \in [t_{m,k}, t_{m,k+1}], k \ge 0)$$

and
$$\widetilde{\theta}_m = \sum_{k=0}^{S_m-1} v(t_{m,k}) [f(t_{m,k+1}) - f(t_{m,k})].$$

By the results of R. C. James [4] and G. Pisier [8].

Theorem. (G. Pisier [8, Theorem 1. 3, (iv)])

Let X be a Banach space and $f = (f_n)_{n \ge 0}$ an arbitrary X-valued martingale.

Then

(*) X is super-reflexive (= super-Radon-Nikodým)

 \Leftrightarrow

$$(\ \boldsymbol{*}\ \boldsymbol{*}\ \boldsymbol{)}\ \underset{_{n} \geq 0}{\overset{\Sigma}{\triangleright}}\ \|f_{n\ +\ 1} - f_{n}\|_{p} \leqslant C \cdot \underset{_{n}}{\sup}\ \|f_{n}\|_{p}\ (1$$

(Here, C is a constant which does not depend on f.)

Since X = R is super-reflexive, (* *) holds.

(**) will be called by the name of Pisier's inequality.

In this paper, it is proved that the following theorem holds:

Theorem. θ_m converges in L^p and $\theta_\infty = \widetilde{\theta}_\infty = \int_0^1 v(t) df(t)$. θ_∞ defines a new stochastic integral.

^{*} 数学,一般教科助教授

```
Proof. Let 1 .
 \|\theta_{m}\|_{p} = \mathbb{E}^{1/p} \left[ \left( \left[ \sum_{k \geq 0} v(\xi_{m,k}) \left[ f(t_{m,k+1}) - f(t_{m,k}) \right] \right] \right)^{p} \right]
    \leq E^{1/p} \left[ \left( \sum_{v \geq 0} |v(\xi_{m,k})| |f(t_{m,k+1}) - f(t_{m,k})| \right)^p \right]  (Here, |v| \leq 1)
    \leq E^{1/p} \left[ \left( \sum_{k \geq 0} |f(t_{m, k+1}) - f(t_{m, k})| \right)^{p} \right]
                                                                                                                              (Since L<sup>p</sup> is a Banach lattice. See [9].)
    \leq \sum_{k \geq 0} \|f(t_{m, k+1}) - f(t_{m, k})\|_{p}
    \leqq C \cdot \sup_{} \left\| f\left( \left. t_{m, \ k} \right) \right\|_{p} \qquad (m = 0, \ 1, \ 2, \ \cdots \cdots) \text{ (By Pisier's inequality)} \right.
                                                                                                   (Since C does not depend on f, C does not depend on m.)
   \leq C \cdot \sup_{t \in [0, 1]} \|f(t)\|_{p} (Since t_{m, k} \in [0, 1].)
    \leq C \cdot ||f(1)||_{p}
                                                                                               (Since |f(t)|^p is a submartingale, E |f(t)|^p \le E |f(1)|^p
                                                                                                so E^{1/p} [|f(t)|^p] \le E^{1/p} [|f(1)|^p] < \infty).
        Thus, E[|\theta_m|^p] \leq C^p \cdot ||f(1)||_n^p.
        If \theta_{\infty} exists then
         \|\theta_{\infty}\|_{p} = \|\mathbf{s} - \lim_{m \to \infty} \|\theta_{m}\|_{p}
                =\lim_{m\to\infty} ||\theta_m||_p
                                                                                                                                                                                  (See [ 14 ] .)
                \leq C \cdot ||f(1)||_p < \infty.
        Therefore \theta \infty \in L^p.
        Next, it is proved that the existence of \theta_{\infty}.
        By a result of P. W. Millar [6], \widetilde{\theta}_{m} converges in L<sup>p</sup>,
        that is, \lim \|\widetilde{\theta}_m - \widetilde{\theta}_n\|_p = 0.
        Take arbitrary \varepsilon > 0 and fix this.
        Since v(t) is uniformly continuous on [0,1], for sufficiently large
        m_0 = m_0 (\epsilon, \omega) = m_0 (\omega) \ge m
                  |v(\xi_{m',k})(\omega) - v(t_{m',k})(\omega)| \le \varepsilon \quad (\forall k \ge 0, \forall m' \ge m_0)
            (Because, since v (t) is uniformly continuous, for \varepsilon > 0 there is a \delta > 0.
             Since |\Delta_m| \to 0 as m \to \infty, for sufficiently large m_o (\omega),
             \delta > |\Delta_{\mathbf{m}'}| = \operatorname{Max} (t_{\mathbf{m}', \mathbf{k} + 1} - t_{\mathbf{m}', \mathbf{k}}) \qquad (\forall \mathbf{m}' \geq \mathbf{m}_{\mathbf{0}} (\boldsymbol{\omega}))
                                  \geq \xi_{m', k} - t_{m', k} \geq 0  (\forall k \geq 0)
            So \varepsilon \ge |v(\xi_{m',k})(\omega) - v(t_{m',k})(\omega)|
        Therefore.
         \|\theta_{m'} - \widetilde{\theta}_{m'}\|_{p} \leq \sum_{k \geq 0} \|[v(\xi_{m',k}) - v(t_{m',k})][f(t_{m',k+1}) - f(t_{m',k})]\|_{p}
                 \leq \sum_{v \geq 0} E^{1/p} \left[ (|v(\xi_{m',k}) - v(t_{m',k})| \cdot |f(t_{m',k+1}) - f(t_{m',k})|)^p \right] 
                \leq \sum_{k} E^{1/p} [(\epsilon \cdot |f(t_{m', k+1}) - f(t_{m', k})|)^p]
                \leq \varepsilon \cdot \sup_{m' \in K \atop m' \in K} \sum_{k \geq 0} \| f(t_{m', k+1}) - f(t_{m', k}) \|_{p}
                \leq \varepsilon \cdot \sup_{\substack{m \in \Omega \\ w \in \Omega}} \{ C \cdot \sup_{n} \| f(t_{m', n}) \|_{p} \} 
 \leq \varepsilon \cdot \sup_{\substack{m \in \Omega \\ w \in \Omega}} \{ C \cdot \sup_{t \in [0, 1]} \| f(t) \|_{p} \} 
 \leq \varepsilon \cdot C \cdot \| f(1) \|_{p}.
```

```
(Here, \{f(t_{m',k})\}_{k\geq 0} is a martingale.
               In fact, take an any \omega \in \Omega and fix an m'(\omega).
               In general, since f = \{ f(t) \} is a martingale, for any m \ge 0
               \{f(t_{m,k})\}_{k\geq 0} is a martingale. So for almost all \omega'\in\Omega
                         E(f(t_{m'(\omega), k(\omega)+1})/a_{t_{m'(\omega), k(\omega)}})(\omega')
                                  = f(t_{m'(\omega), k(\omega)})(\omega'), k = k(\omega).
               Here, let \omega' = \omega then \{f(t_{m'(\omega), k(\omega)})(\omega)\}_{k \geq 0}, that is, \{f(t_{m', k})\}_{k \geq 0} is a martingale.)
Thus.
    \lim_{m \to \infty} \|\theta_m - \widetilde{\theta}_m\|_p = \lim_{m \to \infty} \|\theta_{m'} - \widetilde{\theta}_{m'}\|_p \qquad (m \ge \max_{m \in \Omega} m' \ (\ge m'))
                  \leq \varepsilon \cdot C \cdot \|f(1)\|_{p} for all \varepsilon > 0.
Therefore, from \|\boldsymbol{\theta}_{\,\mathrm{m}} - \boldsymbol{\theta}_{\,\mathrm{n}}\|_{\,\mathrm{p}} \leq \|\boldsymbol{\theta}_{\,\mathrm{m}} - \widetilde{\boldsymbol{\theta}}_{\,\mathrm{m}}\|_{\,\mathrm{p}} + \|\widetilde{\boldsymbol{\theta}}_{\,\mathrm{n}} - \boldsymbol{\theta}_{\,\mathrm{n}}\|_{\,\mathrm{p}} + \|\widetilde{\boldsymbol{\theta}}_{\,\mathrm{m}} - \widetilde{\boldsymbol{\theta}}_{\,\mathrm{n}}\|_{\,\mathrm{p}}
it follows that
    \lim_{m\to\infty} \|\theta_m - \theta_n\|_p
         \leq 2 \cdot \lim_{m \to \infty} \|\theta_m - \widetilde{\theta}_m\|_p + \lim_{m \to \infty} \|\widetilde{\theta}_m - \widetilde{\theta}_n\|_p \qquad (m, n \geq \max_{\omega \in \Omega} m'(\omega))
          < 2 \varepsilon \cdot C \cdot ||f(1)||_{p} + 0 for all \varepsilon > 0.
So, by the completeness of L^p,~\theta_m converges in L^p so that ~\theta_{~\infty}~ exists.
```

Remark. When p > 1 the Pisier's inequality implies the Burkholder's L^p -inequality in [1] so that the Millar's results [6] hold without that v(t) is a_t -adapted. Therefore, it may be that v(t) is any uniformly bounded and

Corollary. $\int_0^1 v(t) dB(t)$ converges in L².

continuous random variable.

From this proof $\theta_{\infty} = \widetilde{\theta}_{\infty} = \int_{0}^{1} \mathbf{v}(t) df(t)$ follows.

(The convergence of this integral cannot be proved by the method of R. L. Stratonovich. See [2] and [13].)

References

- [1] D. L. Burkholder: Martingale transforms. Ann. Math. Statist., 37, 1494-1504 (1966).
- [2] N. Ikeda and S. Watanabe: Stochastic differential equations and diffusion processes. North-Holland / Kodansha, Amsterdam · Oxford · New York / Tokyo, 1981.
- [3] K. Itô: Stochastic integral. Proc. Imp. Acad. Tokyo, 20, 519-524 (1944).
- [4] R. C. James: Super-reflexive space with bases. Pacific J. Math., 41, 409-419 (1972).
- [5] H. Kunita and S. Watanabe: On square integrable martingales. Nagoya Math. J., 30, 209-245 (1967).
- [6] P. W. Millar: Martingale integrals. Trans. Amer. Math. Soc., 133, 145–166 (1968).
- [7] J. Neveu: Discrete-Parameter Martingales. North-Holland Pub. Co. Amsterdam Oxford, 1975.
- [8] G. Pisier: Martingales with values in uniformly convex spaces. Israel J. Math., 20, 326–350 (1975).
- [9] H. H. Schaefer: Banach lattices and positive operators. Springer-Verlag, Berlin, 1974.
- [10] T. Shintani (with T. Ando): Best Approximants in L¹ Space. Z. Wahrsheinlichkeitstheorie, 33, 33–39 (1975).
- [11] (with D. L. Burkholder): Approximation of L¹-bounded martingales by martingales of bounded variation. Proc. Amer. Math. Soc., **72**, 166–169 (1978).
- [12] ——: A proof of the Burkholder theorem for martingale transforms. Proc. Amer. Math. Soc., **82**, 278–279 (1981).
- [13] R. L. Stratonovich: Conditional Markov processes and their application to the theory of optimal control. American Elsevier Pub. Co., New York, 1968.
- [14] K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1968.

Department of Mathematics Tomakomai National College of Technology Tomakomai, Hokkaido 059–12 Japan