## MARTINGALE TRANSFORMS IN A BANACH SPACE

## Toshitada Shintani\* (Received November 20,1995)

**ABSTRACT**. If  $f = (f_1, f_2, \cdots)$  is a real  $L^1$ -bounded martingale then  $\sum_{n=1}^{\infty} |f_{n+1} - f_n| < \infty$  a.e. The same result holds for X-valued martingales, where X is a Banach space, provided X has the Radon-Nikodým property. Using this the martingale transform g of f by v converges almost everywhere without assuming that v is predictable.

- **1.Notations.** Let  $(\Omega, \alpha, P)$  be a probabity apace and  $\alpha_1, \alpha_2, \cdots$  a nondecreasing sequence of sub- $\sigma$ -fields of  $\alpha$ . Let X be a Banach space with norm  $|\cdot|$  and the Radon-Nikodým property. Let  $f = (f_1, f_2, \cdots)$  be an X-valued martingale with norm  $||f||_1 = \sup_{n} E |f_n| < \infty$ . Let  $v = (v_1, v_2, \cdots)$  be a real-valued predictable sequence, that is,  $v_k : \Omega \to R$  is  $\alpha_k$ -measurable,  $k \geqslant 1$ . Then  $g = (g_1, g_2, \cdots)$ , defined by  $g_n = \sum\limits_{k=1}^n v_k (f_{k+1} f_k)$  with  $|v| \leqslant 1$  in absolute value, is the transform of the martingle f by v. Write  $||f||_p = \sup_{n} ||f_n||_p$  and define the maximal function  $g^*$  of g by  $g^*(\omega) = \sup_{n} |g_n(\omega)|$ .
- 2. Real-valued case. Let  $\beta$  be a sub- $\sigma$ -field of  $\alpha$ . If Z is a random variable with finite mean, by the Radon-Nikodým theorem, for Z there is a  $\beta$ -measurable function  $\varphi$  which is satisfying

$$\int_A Z(\omega) dP = \int_A \varphi(\omega) dP \quad \text{for every } A \in \beta$$
 and which decides the correspondence  $Z \rightarrow \varphi(\text{i.e.}, Z(\omega) \mapsto \varphi(\omega))$ .

This function  $\varphi$  is unique up to a set of P-measure zero, and any such function, denoted by  $E(Z/\beta)$ , is called the conditional expectation of Z relative to  $\beta$ . Therefore, the above correspondence is written by

 $E(Z/\beta)(\omega) = E(Z(\omega)/\beta) = \varphi(\omega)$  for almost all  $\omega \in \Omega$ .

If  $f = (f_1, f_2, \cdots)$  is a martingale then, for almost all  $\omega$ ,

 $E(f_{n+1}(\omega)/\alpha_n) = f_n(\omega) \quad (n=1,2,\cdots).$ 

Let X = R, that is, let  $f = (f_1, f_2, \dots)$  be an L<sup>1</sup>-bounded and real-valued martingale.

Then  $|\cdot|$  denotes the absolute value.

**Theorem 1.** If  $\|f\|_1 < \infty$  then  $\sum_{n=1}^{\infty} |f_{n+1} - f_n| < \infty$  a.e., that is, f is of bounded variation.

**Proof.** Suppose that there exists a subset M of  $\Omega$  such that  $P(M) \neq 0$  and

 $\sum_{i=1}^{\infty} \mid f_{n+1}(\omega) - f_{n}(\omega) \mid = \infty \quad \text{for all } \omega \in M \, .$ 

Then, for any  $G=G(\omega)>0$  there is a number  $N=N(G,\omega)>0$  such that

 $\sum_{k=1}^{n} | f_{k+1}(\omega) - f_{k}(\omega) | > G \text{ on } M (\forall n \gg N).$ 

So there are a number  $k = k(\omega) \le n$  and a positive real number  $G' = G'(\omega)$ 

such that  $|f_{k+1}(\omega) - f_k(\omega)| = G' > 0$  for each  $\omega \in M$ .

Here, set

 $G'\!=\!G'(\omega')=\;\big|\;f_{k(\omega)+1}(\omega')-f_{k(\omega)}(\omega')\;\big|\;\;\text{for each }\omega\in M\;\;(\omega'\in\Omega,\;M\subset\Omega)\;.$ 

G' is well-defined on  $\Omega$  and G'> 0 when  $\omega' = \omega$ , i.e., G'> 0 on M.

Now, when  $\omega' = \omega \mid f_{k+1}(\omega) - f_k(\omega) \mid$  is defined on M.

<sup>\*</sup> 助教授 一般教科 数学

By the definition of the absolute value

$$\begin{split} \mid f_{k+1}(\omega) - f_k(\omega) \mid \\ &= \begin{cases} f_{k+1}(\omega) - f_k(\omega) & \text{on } A \xrightarrow{\text{def.}} \left\{\omega \; ; \, f_{k+1}(\omega) \geqq f_k(\omega)\right\} \; (\subseteq M) \\ - \left(f_{k+1}(\omega) - f_k(\omega)\right) & \text{on } M \diagdown A \, . \end{cases} \end{split}$$

Since  $k(\omega) = k < \infty$ ,  $\{k(\omega) ; \omega \in M\} \subset \{1, 2, \dots, n, \dots\}$ .

Thus,

$$E\mid f_{k(\omega)}(\omega')\mid \leqslant \sup_{\lambda\in\ \{k(\omega)\ :\ \omega\in\ M\}} E\mid f_{\lambda}\mid \leqslant \sup_{\lambda\in\ \{1,2,\cdots,n,\cdots\}} E\mid f_{\lambda}\mid = \sup_{\Omega} \qquad E\mid f_{n}\mid <\infty.$$

So  $|f_{k+1}-f_k| \in L^1$ .

For almost all  $\omega \in A$ 

$$\begin{split} E(\mid f_{k+1} - f_k \mid /\alpha_k) \, (\omega) &= E(\mid f_{k+1} - f_k \mid (\omega)/\alpha_k) \\ &= E(((f_{k+1} - f_k)^+ + (f_{k+1} - f_k)^-) \, (\omega)/\alpha_k) \\ &= E(\{(f_{k+1} - f_k)^+ (\omega) + (f_{k+1} - f_k)^- (\omega)\}/\alpha_k) \\ &= E(\mid (f_{k+1} - f_k) \, (\omega) \mid /\alpha_k) \\ &= E(\mid (f_{k+1} (\omega) - f_k (\omega) \mid /\alpha_k) \\ &= E(f_{k+1} (\omega) - f_k (\omega)/\alpha_k) \\ &= E((f_{k+1} - f_k) \, (\omega)/\alpha_k) \\ &= E(f_{k+1} - f_k/\alpha_k) \, (\omega) \, . \end{split}$$

In general, since f is a martingale  $E(f_{k+1}/\alpha_k) = f_k$  a.e. for any k. Take any  $\omega \in \Omega$  and fix this. Let  $k = k(\omega)$ .

Then  $E(f_{k(\omega)+1}/\alpha_{k(\omega)})(\omega') = f_{k(\omega)}(\omega')$  for almost all  $\omega' \in \Omega$ .

Here take  $\omega' = \omega$  then  $E(f_{k(\omega)+1}/\alpha_{k(\omega)})(\omega) = f_{k(\omega)}(\omega)$ 

for almost all  $\omega$ . Thus,  $E(f_{k+1}/\alpha_k) = f_k$  a.e..

So for almost all  $\omega \in A$ ,

$$E(f_{k+1}-f_k/\alpha_k)(\omega) = (f_k-f_k)(\omega) = f_k(\omega) - f_k(\omega) = 0.$$

That is,  $E(|f_{k+1}-f_k|/\alpha_k)(\omega)=0$  for almost all  $\omega \in A$ .

For almost all  $\omega \in M \setminus A$ 

$$\begin{split} E(\mid f_{k+1} - f_k \mid /\alpha_k) (\omega) &= E(\mid f_{k+1}(\omega) - f_k(\omega) \mid /\alpha_k) \\ &= E(f_k(\omega) - f_{k+1}(\omega)/\alpha_k) \\ &= E(f_k - f_{k+1}/\alpha_k) (\omega) \\ &= (f_k - f_k) (\omega) \\ &= f_k(\omega) - f_k(\omega) \\ &= 0 . \end{split}$$

Therefore  $E(|f_{k+1}-f_k|/\alpha_k)(\omega)=0$  for almost all  $\omega \in M$ .

On the other hand, for almost all  $\omega' \in \Omega$ 

$$\begin{split} \mathbf{E}(\mathbf{G}'(\boldsymbol{\omega}') / \left\{ \boldsymbol{\phi}, \boldsymbol{\Omega} \right\}) &= \mathbf{E}(\mathbf{G}' / \left\{ \boldsymbol{\phi}, \boldsymbol{\Omega} \right\}) (\boldsymbol{\omega}') \\ &= \mathbf{E}(\mathbf{E}(\mathbf{G}' / \boldsymbol{\alpha}_{k(\boldsymbol{\omega})}) / \left\{ \boldsymbol{\phi}, \boldsymbol{\Omega} \right\}) (\boldsymbol{\omega}') \\ &= \mathbf{E}(\mathbf{E}(\mathbf{G}' / \boldsymbol{\alpha}_{k(\boldsymbol{\omega})}) (\boldsymbol{\omega}') / \left\{ \boldsymbol{\phi}, \boldsymbol{\Omega} \right\})) \\ &= \mathbf{E}(\mathbf{E}(\mathbf{G}'(\boldsymbol{\omega}') / \boldsymbol{\alpha}_{k(\boldsymbol{\omega})}) / \left\{ \boldsymbol{\phi}, \boldsymbol{\Omega} \right\}). \end{split}$$

If  $E(G'(\omega')/\alpha_{k(\omega)}) = 0$   $(k = k(\omega))$  for almost all  $\omega' \in \Omega$ 

then

$$E(G'(\omega')) = E(G'(\omega') / \{\phi, \Omega\})$$

$$= E(E(G'(\omega') / \alpha_{k(\omega)}) / \{\phi, \Omega\})$$

$$= E(0 / \{\phi, \Omega\})$$

$$= E(0)$$

$$= 0.$$

Thus, G'=0 a.e. This contradicts to G'>0 on M.

So  $E(G'(\omega')/\alpha_k) \neq 0$  when  $\omega' = \omega$  on M.

Then 
$$0 = \mathbb{E}(|f_{k+1}(\omega) - f_k(\omega)|/\alpha_k)$$
  
=  $\mathbb{E}(G'(\omega)/\alpha_k)$ 

 $\neq 0$  for some  $\omega \in M$ .

This is a contradiction on M. Thus there is not such M.

Therefore  $\Sigma \mid f_{n+1}(\omega) - f_n(\omega) \mid < \infty$  for almost all  $\omega \in \Omega$ .

**Corollary** 1. If  $f = (f_n)_{n > 1}$  is an L<sup>1</sup>-bounded martingale then

 $\mathbb{E}(\mid f_{n+1} - f_n \mid /\alpha_n) = 0$  a.e. and  $\| f_{n+1} - f_n \|_1 = \mathbb{E} \mid f_{n+1} - f_n \mid = 0$  for  $n < \infty$ .

In fact, let  $M = \Omega$  in above proof.

Corollary 2. Under the above condition  $\sum_{n=1}^{\infty} \|f_{n+1} - f_n\|_{1} = \infty$ .

In fact,  $\lim \|f_{n+1} - f_n\|_1 \neq 0$ .

3. Vector-valued case. Let  $Z(\omega)$  be a Bochner-integrable function on a probability space  $(\Omega, \alpha, P)$  taking values in X.

Let  $\beta$  be a sub- $\sigma$ -field contained in  $\alpha$ . Then the conditional expectation  $E(Z/\beta)$  of  $z(\omega)$  relative to  $\beta$  is defined as a Bochner-integrable function on  $(\Omega, \alpha, P)$  such that  $E(Z/\beta)$  is  $\beta$ measurable and that

$$\int_{A} Z(\omega) dP = \int_{A} E(Z/\beta) (\omega) dP, \quad \forall A \in \beta, \text{ where the integrals are Bochner-integrals.}$$

Therefore, by above correspondence  $Z(\omega) \mapsto E(Z/\beta)(\omega)$ , similarly in the real-valued case  $E(Z/\beta)(\omega)$  is written by  $E(Z(\omega)/\beta)$ 

for almost all  $\omega \in \Omega$ .

(See [4], p.395 and p.396, Theorem 1. And also see [5], p.22.)

Let f be an X-valued and  $L_X^1$ -bounded martingale.

Then  $E(f_{n+1}(\omega)/\alpha_n) = f_n(\omega)$   $(n=1,2,\cdots)$ .

**Theorem 2.** If  $\|f\|_1 < \infty$  then  $\sum_{n=1}^{\infty} |f_{n+1} - f_n| < \infty$  a. e..

**Proof**. Suppose that there exists a subset M of  $\Omega$  such that

 $P(M) \neq 0$  and  $\sum_{n=1}^{\infty} |f_{n+1}(\omega) - f_n(\omega)| = \infty$  for all  $\omega \in M$ .

Then, for any  $\overset{n=1}{G}=G(\omega)>0$  there is a number  $N=N(G,\omega)>0$  such that  $\sum\limits_{k=1}^{n}\mid f_{k+1}(\omega)-f_{k}(\omega)\mid>G$  on M  $(\forall\,n\!\gg\!N)$ .

So there are a number  $k = k(\omega) \le n$  and a positive real number  $G' = G'(\omega)$ 

such that  $|f_{k+1}(\omega) - f_k(\omega)| = G' > 0$  for each  $\omega \in M$ .

Then,  $\vec{g}(\omega') \stackrel{\text{def.}}{=\!\!\!=\!\!\!=} f_{k(\omega)+1}(\omega') - f_{k(\omega)}(\omega')$  for each  $\omega \in M$   $(\omega' \in \Omega, M \subset \Omega)$ 

such that  $|\vec{g}(\omega)| = G'(\omega) > 0$  when  $\omega' = \omega$ , i. e.,  $\vec{g} = \vec{g}(\omega) \neq \vec{0}$  on M.

Since f is a martingale, for almost all  $\omega' \in \Omega$ 

$$\mathbb{E}\left(f_{k(\omega)+1}(\omega') - f_{k(\omega)}(\omega')/\alpha_{k(\omega)}\right) = \mathbb{E}\left(f_{k(\omega)+1} - f_{k(\omega)}/\alpha_{k(\omega)}\right)(\omega') = \vec{0}.$$

So 
$$\int\limits_{M} \!\! E(\vec{g}(\omega')/\alpha_{k(\omega)}) dP(\omega') = \vec{0} \quad \text{and} \quad \int\limits_{\Omega \smallsetminus M} \!\! E(\vec{g}(\omega')/\alpha_{k(\omega)}) dP(\omega') = \vec{0} \; .$$

Thus, 
$$E(\vec{g}) = \int_{\Omega} E(\vec{g}(\omega')/\alpha_{k(\omega)}) dP(\omega')$$
  

$$= \int_{\Omega} E(\vec{g}(\omega')/\alpha_{k(\omega)}) dP(\omega') + \int_{\Omega \setminus M} E(\vec{g}(\omega')/\alpha_{k(\omega)}) dP(\omega')$$

$$= \vec{0} \quad (\text{Here E denotes the Bochner integral. See [5].})$$

 $\stackrel{\text{def.}}{\iff} E \mid \vec{g} \mid = 0$  (E is the Lebesgue integral)

$$\iff |\vec{g}| = 0$$
 a. e.

 $\iff$   $\vec{g}(\omega') = \vec{0}$  for almost all  $\omega' \in \Omega$  and for each  $\omega \in M$ .

So  $\vec{g}(\omega) = \vec{0}$  on M ( $\subseteq \Omega$ ).

This is a contradiction on M. Thus, there is not such M.

Therefore  $\sum_{n=1}^{\infty} |f_{n+1}(\omega) - f_n(\omega)| < \infty$  for almost all  $\omega \triangle \Omega$ .

## 4. Martingale transforms.

**Theorem 3.** If  $\| f \|_1 < \infty$  then the martingale transform g converges a. e. in X without the assumption that v is predictable.

In fact,

$$|g_{\infty}(\omega)| \leqslant \sum_{n=1}^{\infty} |v_{n}(\omega)| \cdot |f_{n+1}(\omega) - f_{n}(\omega)| \leqslant \sum_{n=1}^{\infty} |f_{n+1}(\omega) - f_{n}(\omega)| < \infty$$
 for almost all  $\omega$ .

**Theorem 4.** Let  $1 and <math>\|f\|_1 < \infty$ . For a Banach space X with the Radon-Nikodým property,  $\lambda \cdot P(g^* > \lambda) \leqslant c \cdot \|f\|_1$ ,  $\lambda > 0$ , and  $\|g\|_p \leqslant c_p \cdot \|f\|_p$  hold under the assumption that v is predictable.

**Proof.** For any Banach space X, by a result of Burkholder (Theorem 1.1 of [2]), the following statements, each to hold for all such f and g are equivalent:

$$\| f \|_1 < \infty \Rightarrow g \text{ converges a. e.},$$

$$\lambda \cdot P(g^* > \lambda) \leqslant c \cdot \| f \|_1, \lambda > 0,$$

$$\| g \|_p \leqslant c_p \cdot \| f \|_p \cdot$$

Combine this result with Theorem 3.

**Acknowledgement**. The author is very grateful to Professor D. L. Burkholder for his kindly discussions in details.

## References

- [1] D. L. Burkholder: Martingale transforms. Ann. Math. Statist., 37(1966), 1494-1504.
- [2] : A geometric characterization of Banach spaces in which martingale difference sequences are unconditional.

Ann. Probability, 9(1981), 997-1011.

[3] D. L. Burkholder and T. Shintani: Approximation of L<sup>1</sup>-bounded martingales by martingales of bounded variation.

Proc. Amer. Math. Soc., 72(1978), 166-169.

[4] S. D. Chatterji: Martingales of Banach-valued random variables.

Bull. Amer. Math. Soc., 66(1960), 395-398.

[5] ————: Martingale convergence and the Radon-Nikodým theorem in Banach Spaces. Math. Scand., 22(1968), 21-41.

Department of Mathematics, Tomakomai National College of Technology, Tomakomai, Hokkaido 059-12, Japan