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MARTINGALE TRANSFORMS IN A BANACH SPACE

Toshitada SHINTANI*
(Received November 20,1995)

ABSTRACT. If f=(f,,f,,"--)is a real L'-bounded martingale then g‘.l | fasi—fn | <0 a.e.
The same result holds for X-valued martingales, where X is a Banna;ch space, provided X has
the Radon-Nikodym property. Using this the martingale transform g of f by v converges
almost everywhere without assuming that v is predictable.

1.Notations. Let (Q,a,P) be a probabity apace and a, a;, -+ a nondecreasing sequence of
sub-o-fields of @. Let X be a Banach space with norm | - | and the Radon-Nikodym prop-
erty. Let f =(f,,f,,~) be an X-valued martingale with norm [ fl 1=sHp E|f.]| <oo.

Let v =(v,,v;,-"") be a real-valued predictable sequence, that is, vy : Q—R is a,-measurable,
k>1. Then g =(g,,8.,'"), defined by g. = 2 v, (fes,—f) with | v ]| <1 in absolute value,
is the transform of the martingle f by v. Wrxte || fll p=syp Il fa | , and define the maximal func-
tion g* of g by g*(w) =syp | go(@) | .

2 Real-valued case. Let 8 be a sub-o-field of @. If Z is a random variable with finite
mean, by the Radon-Nikodym theorem, for Z there is a B-measurable function @ which is
satisfying

fZ(w)dP=f¢(w)dP for every Aef

an(; which decli\des the correspondence Z—g(i.e.,Z(e@)— @ (w)).
This function ¢ is unique up to a set of P-measure zero, and any such function, denoted by
E(Z/B), is called the conditional expectation of Z relative to £. Therefore, the above corre-
spondence is written by
E(Z/B) (w) =E(Z(w)/B) =@ (w) for almost all we Q.
If f =(f,,f,,~") is a martingale then, for almost all @ ,
E(for (@) /an) =fn(@) (n=1,2,--).
Let X =R, that is, let f =(f,,f,,~~-) be an L'-bounded and real-valued martingale.
Then | + | denotes the absolute value.
Theorem 1. If [[fl ;<o then E | fosr—fa | <00 a.e., that is, f is of bounded variation.
Proof Suppose that there ex1sts a subset M of Q such that P(M) #0 and
2 | fosr (@) —fa(w) | =00 for all @e M.
Then for any G=G(w) >0 there is a number N=N(G, w) >0 such that
2 |fk+1((n)) fy (@) | >Gon M (Vn>N).
So there are a number k =k(w)<n and a positive real number G'=G’(w)
such that | fus1 (@) —fi(w) | =G’>0 for each we M.
Here, set
G=G (@)= | fuw+1(@") —fiw (@) | for each @weM (0'€Q, MCQ).
G’ is well-defined on Q and G'> 0 when w'=w,i.e., G'>0 on M.
Now, when @' = | fis:(w) —fi(w) | is defined on M.
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By the definition of the absolute value
I fk+1(w)—fk(w) |
_{fk“(w)—fk(w) on A %= {0 fui (@) Zfi (@)} (CM)
= (f (@) —fi (@) on M\A.
Since k(w) =k<, {k(w); weM} C {1,2,---,n,--}.
Thus,
El|lfiw(@) |<sup E|fi|<sup E]|f,| =syp E|f,]| <oo.
1€ {k(w): we M) 2e {1,2,,n,)
So | fus—fi | €.L1.
For almost all we A
E( I f1«1-1_fk | /a’k) (&J) :E( I fk+1_fk | (w)/a’k)
= E(((fyy, =) *+ (firr — 1) ) (w)/a)
= E({ (fk+1 _fk)+(&)) + (fk+1_fk)_(w) }/a’k)
= E(| (fue1—fx) (@) | /)
= E(l (fes (@) —fy (@) |/61’k)
= E(fk+1(m)—fk(w)/ak)
= E((fys —1fi) (@)/ak)
= Elfysi—f/a) (@) .
In general, since f is a martingale E(f,,,/ &) =f, a.e. for any k. Take any @ € Q and fix
this. Let k =k(w).
Then E (fiio)+1/ ko)) (@) =fi) (@) for almost all @’ €Q.
Here take @’=w then E(fx)+1/ axw) (@) =fiw (@)
for almost all @. Thus, E(fi.,/a) =f, a.e..
So for almost all we A,
E(fk+1_fk/a’k) (w)= (fk_fk) (@) =f(w) —f(w)=0.
That is, E(| fus1—fu | /o) (w) =0 for almost all weA.
For almost all we M\ A
E( | fk-f-l_fk | /a’k) (w) :E( | fk+1(w) _fk (&J) I /a’k)
=E(fi (@) —fis1 (@) /)
:E(fk_fk+1/ak) (@)
= (f,— 1) (w)
=fi (@) —fi (@)
=0.
Therefore E( | fi—fi | /) (w) =0 for almost all we M.
On the other hand, for almost all @' € Q
E(G(w)/ {¢.0})) = EG/ {4.0}) (@)
=EEG/avw)/ 4.0 (o)
=E(E(G’/dk(m)) (&7’)/ {QS,Q}))
:E(E(G,(&),)/a’k(m))/ {¢,Q})
If E(G(w)/axw) =0 (k=k(w)) for almost all @’ €Q
then
E(G(@))=EG () / {4.0Q})
'—'E(E(G’(&)’)/a’k(m))/ {¢,Q})
=E(0/ {¢.Q})
=E(0)
=0.
Thus, G'=0 a.e. This contradicts to G’> 0 on M.
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So E(G(w)/a)* 0 when @'=w on M.
Then 0=E(]|fi(w)—fi(w) |/a)
=EG (@) /&)
*+ 0 for some weM.
This is a contradlctlon on M. Thus there is not such M.
Therefore 2 | for1 (@) —fa(w) | <o for almost all o€ Q.
Corollary 1 If f=(f,)n>: is an L'-bounded martingale then
E(|fui—ful/a)=0 a.e. and | fo;—fo | ,=E|fos—fa| =0 for n<oo,
In fact, let M =Q in above proof. .
Corollary 2. Under the above condition 3 | for—fa Il ,=00.
In fact, }11412 | fosr—fa ll 0.

3.Vector-valued case. Let Z(w) be a Bochner-integrable function on a probability space
(Q,a,P) taking values in X.

Let 8 be a sub-o-field contained in «. Then the conditional expectation E(Z/8) of z(w) rel-
ative to B is defined as a Bochner -integrable function on (Q, a,P) such that E(Z/g) is 8-
measurable and that

f Z(w)dP = f E(Z/B) (w)dP, VAe g, where the integrals are Bochner-integrals.

Therefore by above correspondence Z(w)—E(Z/B) (w), similarly in the real-valued case
E(Z/B) (@) is written by E(Z(w)/B)
for almost all we Q.
(See [4], p.395 and p.396, Theorem 1. And also see [5], p.22.)
Let f be an X-valued and Li-bounded martingale.
Then E(foi(w)/an) =fi(w) (n= 1,2,).
Theorem 2. If [ fl,<co then 2 | fari—fn | <0 a. e.
Proof. Suppose that there ex1sts a subset M of Q such that
P(M)=+0 and n§=)1 | foe1 (@) —fa(@) | =0 for all @we M.
Then, for any G = G(w)> 0 there is a number N = N(G,w)> 0
such that él | firi (@) —fu(@) | > G on M (vn>N).
So there are a number k =k(w)<n and a positive real number G’ =G’ (w)
such that | fu,(w) —fi(w) | = G>0 for each we M.
Then, £(w) 2= f o1 (@) —fuw (@) for each weM (w’'€Q, MCQ)
such that | €(w) | = G(w)>0 when o' =w, i. e., £=2(w)* (0 on M.

Since f is a martingale, for almost all @’ €Q
E (fior +1 (@) — i) (@) / @ke) :E(fk(w)+l_fk(w)/a’k(m)) (") = 6 .

So [E@E(0)/aww)dP(@)=0 and [ E@E(w)/aww)dP(e)=0.

M O\M

Thus, E(@) = fE(E:’(co’)/ark(u))dP(w’)

—fE(g(w)/a/m) )dP () + [ EE(0)/ayw)dP(e)

= O (Here E denotes the Bochner integral. See [5].)

def.

& E|g€| =0 (E is the Lebesgue integral)
& |gl=0 a.e.
= g(w)= for almost all @’€Q and for each we M.

So £(w)=0 on M (CQ).
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This is a contradiction on M. Thus, there is not such M.
Therefore 3 | for1 (@) —fo(w) | <co  for almost all @AQ.

4.Martingale transforms.
Theorem 3. If | f |,<oo then the martingale transform g converges a. e. in X without
the assumption that v is predictable.
In fact, . .
I goo(f'-’) I < n% I Vn(@) | * | fn+1(w) _fn(w) | < n§=:1 I fn+1((n))_fn(&7) I <oo
for almost all .
Theorem 4. Let 1 <p<o and |fll,<co. For a Banach space X with the Radon-Nikodym
property, 1:P(g*>21)<c-IIfll,, >0, and llgll,<cp* I fll,
hold under the assumption that v is predictable.
Proof. For any Banach space X, by a result of Burkholder (Theorem 1.1 of [2]), the
following statements, each to hold for all such f and g are equivalent :
I £l ,<oo= g converges a. e.,
A-PE>0)< ¢ Ifll,, >0,
lgllo< oo Il 5e
Combine this result with Theorem 3.
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