127

A Microscopic Study of Thermal Resistance between *He and a Solid

Hatsuyoshi KAaTo*

Tomakomai National College of Technology, Nishikioka, Tomakomai, 059-12 JAPAN

(Received November 22, 1995)

Abstract

We study thermal resistance between the liquid *He and solids from the point of view with a
microscopic theory. We derive Hamiltonian that expresses interactions for quasiparticles of the
liquid *He and a solid. The thermal resistance is calculated with this Hamiltonian from the first
principles theoretically. It contains both terms of individual excitations and zero sound excitations.

1 Introduction

In research of material properties at low
temperatures, thermal exchange between
different materials becomes an important
problem. It is well known that there is a sharp
leap of temperature AT at a boundary of two
different materials. Thermal resistance Ry at
the boundary is roughly proportional to the
minus third power of temperature, T "® The
thermal resistance becomes rapidly higher
when the temperature decreases. The
definition of ‘Ehe thermal resistance Ry is

R«=AT/Q(T),
where AT is the leap of the temperature and
Q(T) is a net heat flux at the boundary. This
is discussed in section 1.1.

There are many works on researches of
the thermal conductance between liquid ‘He
and solids. They are important for a
consideration of the system for absorbed
Helium system. *He, a Fermi particle, is widely
used as a medium for the thermal exchange at
mK temperatures. Liquid ®He is interesting
theoretically because it has strong interactions.

*  BEaR —REH

There is a theory explaining thermal
resistance semi-phenomenologically by Toobs
et al. for the heat transfer between *He and
solid by Fermi liquid theory. However, there
are no theories from the point of view with
microscopic interactions in the system. In this
paper the thermal resistance between *He and
solids is studied in Hamiltonian formalism
from the point of view of a microscopic theory.

In chapter 1, properties of liquid Helium
are summarized. In chapter 2, Fermi liquid
theory and conservation laws are discussed. In
chapter 3, the thermal resistance between
liquid *He and solids is derived.

1.1 General Features of Liquid Helium

*He exists in the air by 1.3X107'%, but the
main production method is the S decay of
tritium (*H) that is able to be got from a
nuclear reactor.”

Range of temperatures for which the
Fermi liquid theory of Landau can be applied
is from 2.7mK (the critical temperature of
superfluidity) to 100mK. In these temperatures,
‘He can be treated as a quasi-particle. Some
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Table 1 Parameters of Helium

‘He ‘He unit
mass 6.65 5.01 X10%g
n number density 2.18 1.64X10% atm/cm’
mass density 0.145 0.0815 g/cm’
¢ sound velocity (1K) 238 182 m/sec
o 2.556 2.556 A
£ 10.22 10.22 K
u#  chemical potential -7.20 -2.52 K/atm

parameters for *He and ‘He are listed in Table
1. In this table ¢ and & are parameters for the
Lennard-Jones potential as in the following
formula:

vi=te[(£)"-(2)]

where r is a distance between two particles.

Effective mass m* of *He in the normal
liquid is three times of a mass of one particle.
‘He has the phase transition of superfluidity at
a temperature 4.17K. At lower temperatures,
there are two elementary excitations: phonon
and roton. Their dispersion relations are as
follows:

phonon: @q=Ciq;
2

roton: &,=A +—(P§P—°)—
m;

At a temperature 1.1K, A/ks=8.67K, p./ (h/2
7) =194 A" m,/m,=0.15, where m, is the mass
of the particle *He, q is a wave number of
phonon and p is a momentum of the roton.

*He can melt into the superfluid of ‘He by
6.49% till the absolute zero. Energy of a
quasi-particle of *He is given as follows:

2

es=evt g

where &,=—2.785K and m*=1.17X10"%g. The
quasi-particle of *He in the superfluid ‘He has
an important feature. That makes a dilute
Fermi liquid and is used for a dilution
refrigerator. Excitations in this dilute solution
are phonons of ‘He and individual excitations
of *He. Specific heats of these excitations are
expressed as C, and C;, respectively, and they

are expressed as follows:
_ 271.’2 kB4 3
S Bz e |

=3.058 X10°T* J/deg m®,

_m kF k32
Co= 3(h/2x)?

=5.78X10°x"*T J/deg m’,

T

where x is a molar fraction of *He. Fermi wave
number (kr), Fermi temperature (Tr), and
Fermi velocity (ve) have the following values:
ke= (37°n,) "*x'*=0.858x"* A
T-=2.53x" K
vi=77x"* m/sec.

1.2 Kapitza Thermal Resistance

(Theory of Acoustic Mismatch)

In this section the theory of acoustic
mismatch by Khalatnikov is briefly explained.?
Kapitza resistance Ry is defined as follows:

Rk:AT/ Q,
where AT is a defference of temperature
between a solid and the superfluid helium, Q is
a heat flux.

Qualitatively, it is explained easily why
the thermal conduction between a solid and
He II is so small. It stems from a large
difference between sound velocities in the solid
and He II. The velocity in He II is 238 m/sec,
and it is about 1/10 of the velocity in the solid.
From this fact, it is seldom that conservation
laws of momentum and energy are
simultaneously satisfied for phonons getting
into the solid from the liquid He with the same

temperature. The conservation laws strictly
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limit phonons within certain incident angles.
(From the samereason, thermal conduction is
not easy to occur by the rotons in the liquid
that get into the solid as phonons.)

Quantitatively, we explain the thermal
resistance in the rest of this section and get
results (Egs.(12) to (14)) which are useful for
discussions in later sections. Velocity field v in
the liquid and displacement u in the solid can
be expressed as follows:

V= V¢in+ V¢ref,
u=ro+rxy,

where ¢ is a potential of the velocity, ¢ and
@ are velocity potentials of incident wave
and reflected wave, respectively. ® is a scalar
potential of logitudinal wave and ¥ is a vector
potential of transverse wave. We assume that
k, k' k. and k, are wave vectors on the same
plane as in Fig.1, and call it a z-x plane. Hence,
the wave vectors can be expressed as follows:

k= (k sind, 0, —k cosé),

k’=(k sind, 0, k cosf),

k.= (k. sind,, 0, —k, cosf,),

k.= (ks siné, 0, —ki cosé),
k. is on the z-x plane, so that the uu =V X¥=
ik, X ¥ is on z-x plane. The problem we are now
discussing is 2-dimensional on the z-x plane
and ¥ can be expressed only with nonzero

z
4

k: Incidence k" Reflection

2

Liquid

Solid

Fig.1

y-component as ¥= (0, ¢, 0). The potentials
are expressed as follows:

@in=2~A, exp(ikx sinf—ikz cosd—iwt),

@=A exp (ikx sind+ikz cosf—iwt),

®=iA, exp(ikix sinf—ikz cosf—iwt),

¥ =iA, exp (ikx sinf.—ikz cosf—iwt),
where

kzg k|:ﬂ k(zﬂ

c, a, C,

and c is the sound velocity in the liquid, c. and
¢ are sound velocities in the solid of
transverse and logitudinal waves respectively.
The velocities satisfy the following inequality:

c Kala.
The system we are considering now has
translational symmetry, i.e.,

k sin #=Kk, sin 8.=k, sin 6,
or

sind _ siné, _ siné, )
C Ct CI

The incident wave vi, and reflected wave v. in
the liquid and transmitted wave w
(longitudinal ) and u. (transverse) can be
written as follows:

vin =V pin=ikpin=ikAcexp(ik-r—iwt)

Viet = V gret =ikret pret =ik Aexp(ik r—iwt),

w =V o=iki®=ikiiAexp(ikir —iwt),

ut =V XU =ik X¥

=i(ke cos 6, 0, ke sin 8¢)iAtexp(iker—iwt).
1.2.1 Boundary Conditions

(a) z-components of velocities in the liquid
and the solid at boundary z=0 are the same:

ou

2:9=2 ot

or

2 (Vie+ Veer) = —iw2* (u+u).
From this condition we get the following
equation:

k cos 6 (A—Ay)

=—k cos 6 @ A+k cos 8, @ A. (2)

(b) Continuity of stress normal to the
interface in the liquid and the solid are
expressed as follows:

_ 90
pat7

1 — . —
0ij _psll y b=
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o = 2Dciuij+ D(ci?—2c?) 7-udij,
where
U5 =% ( aiu,' + aju;) .

This is a component of the strain tensor. p is
density of the liquid, D is density of the solid.
Making use of these expressions, the boundary
condition can be expressed as follows:

pdis+ 2 Deuis+D(c*— 2¢)P-udis= 0,

(3

Some terms of Eq.(3) can be expressed by
potentials as

V-u=-k’0,

u13=—;- (k? sin26, @+k cos26, @) ,

UZ3:0,
us= —k/ cos’d, ®+k/ sin 6, cos 8, ¢ ,
P=iwpy .
The components of Eq.(3) for i=1 and 3 are
expressed explicitly as follows.
i=1: ki’ sin 26, Ai+k? cos 26, A.=0,
(4)

i=3: % (Ai+A) =cos26, @A, —sin26, wA.

(5)
Making use of these equations, the
boundary conditions can be gotten. We list the

results again:
k cosf (A—Ay) =—k cosb wA+k, sinf, oA,

(29
0:1{|2 Sin20| A|+kt2 COSZﬁl A( 9y (4/)
% (Ap+A) =c0s26, @A —sin26, wA,

(5")

1.2.2 Transmission Rates and Reflection Rate
Acoustic impedance can be defined as
follows:

— /JC — D Ct — D Ci
Z cosf’ Z cosf.’ ~' cosé’ ®)

Making use of Eq.(1), the boundary conditions
Eqgs.(2"),(4) and (5’) become
cosf (A—A,)

cosé,
siné,

= —sind @A +sind wA,, (7)

_Ci.cosb

sin26. @A —cos26, A, (8)
cicosé, )

% (A+A) =cos26, wA —sin28. wA. (9)

The definition of Eq.(6) makes Eq.(8) in
another way as follows:

Z. sin26, wA,+Z cos26, oA.=0. (8)
From Egs. (9) and (8), we get

_I% Z: cos26, (A+A,)

=(Z, cos26,+7Z, sin’26,) oA, . (10)
Also, Eq (7) similarly becomes
(A Ao) = &)Al . (11)
cos 2€t

After laborious calculations using the above

equations, we get the following equations for

ratios of the potential amplitudes.
A _Zicos26,+Z sin’260—Z

Ay Z cosR6,+7Z sin26,+Z , (12)

® A|=_& ZZ| COSZ&I (13)
Ay D Zcos26,+Z,sin26,+Z ,

wA__p 27, sin26, (14)

A, D Z cos26,+7Z. sin26,+Z .

1.2.3 Expression for the thermal resistance
(Kapitza resistance)
Incident energy per unit time flowing
normally to the boundary is defined as follows:

an=-%— pk? | Ay | ? ¢ cosé. (15)

Work of the liquid to the boundary makes a
flux which flows into the solid. Force exerted
on the boundary can be written f, = —p=iwp
@, and the velocity of the motion of boundary
is v.= 8¢/ dz. Hence, the flux is expressed as
follows:

Jtrans = e[fz] Re|Vz]

29"
- 2 Re[lgv 9z ]
=7pk cosd Re[(Ao+A)(Ao A*)]

(16)

Making use of Egs. (15) and (16), the
transmission rate of energy w is expressed as
follows:
w=] trans/ Jine
=Re [(1+A/A) (1—-A*/AM]. (7)
Energy of the incident phonon is hw/2z and the
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incident angle is 6. Hence, Ji.=hw ¢ cosf/2x.
Energy of phonons transmitted into the solid is
expressed by making use of w=w(4) in Eq.
(17) as follows:

Jtrans:W(ﬁ) Jinc

= (hw/27) c w(8) cosb . (18)

We assume that the phonons are in equilibrium
expressed by Bose-Einstein distribution
n(hw/27zksT). Then the heat flux W from the
liquid to the solid becomes

W /n(hw/ZFkBT)Jtrans (2 )3

_p Ar* (aT)"
D~ 15 (hc)?

In derivation of Eq.(19), angular integration of
wave vector k is considered only for the
incident wave. F is an integral defined as
follows:

F =%%<%>3£1w(0) cosfd(cosf). (20)
F depends on the velocities ¢, ¢, and ¢, but its
value is about unity.

F. (19)

The above calculations are for a system in
thermal equilibrium if there are no differences
of temperature between the liquid and the
solid. Therefore, there exists a heat flow from
the solid to the liquid. The total heat flows
must vanish. If there exists a difference of
temperature 6T and it is not large, the heat
flux Q is derived as follows:

1 5 k 4 3

Q= Z‘%’ 0T=F ¢ ?; h c:[;3

FoT

(21)
Therefore, the reciprocal of Kapitza resistance
Ry is given by
3

Ro'=2L 2k (B P @
The above expression is valid for the thermal
resistance between ‘He and a solid. It is an
important feature that R, T® depends only on
mass densities of liquid *He and the solid and
the ratio of phonon velocities. For Cu and
liquid ‘He, Re T® = 5% 10* cm*K*'/W. For *He
and a solid, the same result could be gotten if
we would consider the zero-sound instead of
the phonon?, i.e.

_1:1681_ Co7t5 kB4 T
R 15D(h )’ © 23)

where p. is a mass density of liquid *He, ¢, is the
velocity of of the zero-sound. For Cu and
liquid *He at 0.12 atm, R, T® = 11 X 10> cm’K‘/W.

2 Fermi Liquid Theory and
Conservation Laws

2.1 Distribution Function and Fermi Liquid

Theory in Nonequilibrium System

In this chapter Fermi liquid theory is
explained briefly.”® It becomes to be needed in
Chapter 3. To treat Fermi liquid as a
nonequilibrium and heterogeneous system, a
distribution function n, (rt) is needed for
quasiparticles and it depends on a position r
and the time t. In this treatment a momentum
p and the position r are considered
simultaneously. So the uncertainty principle
must be argueed. The problem is a localization
of the quasiparticle in the canonical space
(r p). Conditions to use the distribution
function n, (r t) must be the following points.

(a) A range of localization for the quasiparticles
is as same as a heterogeneous range of the
system. This range is expressed as A . Of
course, the heterogeneous range is macroscopic
(not to be small as the sizes of molecules or
atoms).

(b) The distribution function seems to be
changing in a range Ap = keT / v; at a
momentum space. From this reason, the
quasiparticle cannot be localized in the
momentum space less than Ap.

Heisenberg uncertainty relation for the
above (a) and (b) is expressed as follows:

A > (h/2z) vi/keT . (1)
If this relation is satisfied , there are no
problems to use the distribution function. For
example, the normal liquid of *He has a value

(h/2z) vi/ksT=1.25x10""° [AK]/T[K].
If a temperature is 1 mK, the value is
sufficiently small macroscopically.
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To use Wigner distribution function N (r,
o1, r.ozt) is the most general method for the
distribution of quasiparticles. It
probability amplitude for a system to return to
the initial
removed from a position r, with a spin ¢ and
another quasiparticle is put in a position r; with
a spin ¢; simultaneously at a time t. Creation
and annihilation operators are expressed with
as. and a,.. The Wigner distribution function
is defined as follows:

means

state when a quasipaticle is

N(rio1, r202;t)

3 3
___./‘dhgle,z,,p,.n/hfd_h%e—iznpp rz/h <a;262 ap10‘1>
(2)

where < > means an average at a time t. The
Fourier transform of Eq.(2) is an extension of
distribution function (n,) .’ to a heterogeneous
system. It is a 2 X 2 matrix in the spin space.
Hence, the definition of the distribution
function becomes

[np(l', t)]dd':fdar' e"127tp-r/h

r/

N(r+%,a;r—?,a';t) (3)

Baym and Pethick considered the Fermi liquid
with this distribution function quantum-
mechanically as a nonequilibrium and
heterogeneous system.'’ Classical mechanic
distribution function was considered by
Chapman-Enskog® in nonequilibrium system.
Number density n (r,t) at a location r can be
expressed as follows:

n(r, t)=26! N(ro,ro; t)=;fd—;%[np(r,t)]w

)

(4)

Number density of quasiparticles with

momentum is defined as follows:
ny(r, )=3 [ drlng(r, )]
:gfd3rl/d3rze—lzxp~(r1—rz)/h N(rla,rza ;(8

We are considering a heterogeneous
system. External forces may be exerted, and
the system must not be in an equilibrium state.
Energy E (t) of the whole system contains

’

interactions with external fields. Energy of a
quasiparticle at location r should be expressed
by &0, (rt) . It is defined as a variation of the
distribution function n,(rt) :”

3E(t)5fd3rE(r,t)
=; dhs—gfdsrepa(rt)anpg(rt) (6)

where én,, (rt) is a variation of the distribution
function. And it could be arbitrary before the
variation, i.e. , én, (rt) could be a variation
from interactions of the particles or an
external perturbation. An effective interaction
of the quasiparticles is defined with a

variation of e,.(rt) :

3.7
3€pd(l’t):Zd:fd—l]gfdar,fpmp'a'(r,r/,t)3np'a'(l"t),
(7

where 0fos.00 (F, 1, t) is an Landau parameter
in a heterogeneous system. A range of
interactions between quasiparticles in a
neutral Fermi liquid is appropriately h/2zp..
If a change of distribution function ny, (', t)
is small in this range, ény» (r' , t) could be
moved out of the integral with respect to d’r’ in
Eq.(7). In this case,

fpo,po(r, t)Efdar/ fpopo(r, 1’ t) (8)

is a local Landau parameter. Normal liquid *‘He
has a short range interaction. Hence, the

Landau parameter is defined usually as in Eq.
(8) '8)

2.2 Parameters and Hartree-Fock
Approximation in Fermi Liquid Theory
Parameters of Fermi liquid theory are
given in Hartree-Fock approximation from an
interaction Hamiltonian."”" The Hamiltonian
can be define as follows:

= 0
H=2€kaC;ded
ko
+L y(q) Ci+q0 Ci'—q 0" Ck'a'C
Z.de,%'d' k+qo Ck'—qo’Ck'o’'Cko, (1)
q

where v (q) is the Fourier transform of
interactions between particles, &%, = (h/27z)*k*/
2m is kinetic energy of a particle. Energy is
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expressed with Hartree-Fock approximation
as follows:

Eekdnko"l' x(0) (2 kd)

_ikcr%oﬂv(k—k/)366’1'1120'1112'6' (2)

where

ke =< Cis Cie 20 (3)
is the Fermi distribution function for the
ground state. Making a variation

Nt = N+ oo (4)
with a notice of the spherical symmetry of the
interaction, (i.e. v (k-k’) =v (k’-k)), we get
the following Hartree-Fock approximation:

SEM =3 eks ko , (5)
ko
HE . 0
ko bt 2 fkd.k'd'rlk'o", (6)
fioxo=v(0)—v(k—Kk') 8. (7

fitfs is a Landau parameter in Hartree-Fock
approximation. From this
symmetric and antisymmetric parameters are
defined as follows:

parameter,

fre=—{ e %% } ==L v (k) (@)
If the interaction can be assumed as ¢-function,

v (q) =v=const., then the parameters become

fkarkv v (]- 66‘.0") s (10)
s — _f .V
fre = —fix 5 (11)

These equations show that f-parameters do not
depend on wave numbers and fi%5, becomes
zero for two particles with the same spins.
Expansions with spherical functions for £, and
fix on the Fermi surface become

S a 21+ 1 Ty
fi=—fr =21 "2 p(5)ag

=%31,o (12)

where ¢ is a cosine of an angle between wave
vectors of the two particles. Because of =0,
a ratio of the effective mass to the particle
mass become

m*

n =1+% F5=1 (13)

In this expression, Ff is a product of ff and the
state density on the Fermi surface. The self

energy of the Hartree-Fock approximation

iy {fkm+fk ‘.

2

=4(0) -% v (k)

(8)

becomes

Eko‘— Oy ;fko‘k o Nivgr .

Table 2 Fermi Liquid parameters(Experiments)[Ref.4]

‘He
pressure 0 antm 27 atm
m*/m 3.01 5.63
F5 10.07 74.38
Fe 6.04 13.90
F3 -0.67 -0.74
F? -0.67 -0.53
pe (X10™gcm/sec) 8.28 9.235
vi  (cm/sec) 5.48%10° 3.27x10°
Ci (cm/sec) 1.829X10¢ 3.893x10*
*He in ‘He
1.3% 5.0%
Theor.  Exper. Theor.  Exper.
F/3 0.0174 0.055
m*/m;, 2.38 2.38+0.04 2.47 2.46%0.04
F? 0.09 0.09+0.03 0.04 0.08%+0.03
F5 -0.20 -0.42




134 HEAKRI XS EEME

This energy also does not depend on wave
vectors. Because of these facts, the effective
mass m* is equivalent to the particle mass m.

Table 2 shows Landau parameters for the
liquid *He and the dilute solution of *He in the
superfluid ‘He.”

2.3 Conservation Laws of Field and

Stress Tensor

Stress tensor of the liquid *He can be
derived from the theory of field. In this section,
we derive it from Hamiltonian of the system
assumed as follows:

H:f{(héﬁf)z 7 ¢*(x) V¢(x)+V0(X)p(x)}dax

+7 f/ Bx—x') ¢ (x)plx') $x) d'x %,

where V, (x) is an external potential, ¢ (x-x")
is an interaction potential between particles.
¥ (x), ¥ (x) are the quantities of the field.
p(x) is number of density of the particles. It is
expressed with creation and annihilation
operators a« and a« as follows:

¢'(X)=% Slake*,

¢+(X)—/_2 are'*™,

PX)=9(x) $(x) = Gl ai 2y ™. (1)

The conservation for number of particles is
given from the equation of motion for p (x).
The commutation relation [p (x), H] gives the
following formula :

%X 1y =0,

100 =228 (4 (x) 7 g ) — 7 9 () 93]
@)

where j(x) is flux of particles.

Momentum density can be defined with
mass of the particle m ; and j(x) is defined as
g (x) =mj (x). By the same method as in
deriving Eq.( 2 ), the conservation of
momentum becomes

ag(X) +7-TI%(x) + B(x) = — p(x) 7 Vo(x),
(3)

WA E®3 S
as (h/z )2 a¢+(x)8¢'(x)

I (x) = 3 { 0Xs OXa
1997 (x) 9¢(x) 1 32p(x)}
3Xa OXs 2 0Xp0Xa

B(x) =¢*(x) [ 7 $(x—x)p(x )&% ¢(x).

(3b)

The right hand side of Eq.(3) is a term from
the external force. II* (x) is a stress tensor
that is derived from the kinetic energy of the
Hamiltonian. B (x) cannot be expressed as a
divergence of a tensor if we only calculate it
from the commutation relation [g (x), H].
However, it is possible if a effective range is
short for the particle interactions.

In the following discussion, it is not needed
to get the stress tensor explicitly, but we need
the integral with a product of a function and
the tensor. Let any function be expressed by
A (x). The function is assumed not to change
rapidly within the range of the effective
distance of the particle interactions. An
integral of the product A (x) and B (x) becomes
as follows:

3 [ Au(x)Balx) &’
d¢(x—x’) N 13
=2 | &’k | Au(x)==—"F(x,x")d%,
a f Xf X 0Xa (4)
where F(x, x) = v (x) p &) v (x) =F(’, x).

The interaction ¢ (x-x’) has the spherical
symmetry. Hence, the following equation is

valid.
o¢ (x-x') _ _ o¢(xx) _ _ 9¢(x'-x)

OXe X' o).
With this feature of the interaction, Eq.(4)
becomes

_gf d3xf A“(x/)édgx;ﬁF(x,X')dsx’( .)
5

This is equivalent to Eq.(4). Therefore, a half
of an addition of these two expressions is also
equivalent to Egs.(4) and (5). This expression
becomes

%}fd?’xf%{Aa(x)—Aa(x’)}

op(x—x’)

ax,  Fxx)dx. (6)
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The change of A (x) is assumed to be slow
within the effective range of the interactions.
The difference A, (x) and A, (x’) in Eq.(6) can
be written as

9A.(x)

Aa(x)—Aa(x’)zZﬁl(Xa—x’p) X,

Making use of the above equation and the
partial integral with respect to x, Eq.(6)
becomes

s (@ 9 (=1
a fd X Aa(X) B apr 2
F(x,x")d*x’,

(xs—%p) 9%a

(7

With comparison of Eq.(4) and Eq.(7), we get
an expression for B, (x),
ie.
~1 0 —1 _ o y98(x—x")
B“(x)~;axp 2 f(x" e

F(x,x')d%x’.
(8)

Therefore, a stress tensor for the interactions
between the particles can be expressed as
follows :

0 =5 [ (55— x) (x—x ) L 2T
F(x, x")d*’

where r= | x—x’ | .

Assuming J-type function for the
interactions of the particles, we can derive
IT™ (x). All elements of the stress tensor are not
needed hereafter. Hence, only I (x) will be
considered. Eq.(9) can be expressed as follows:

I (x) = —%w* 1) ¢ x) (10)

= 21 8¢(r) 3,7

10 = [(z—2 7 L&D pxyarx. )

p (x’) can be expanded with plane waves, i.e.
p(x') = %%!pq e'ax

Substituting this expression into Eq.(11) we
get

op(x—x")

I(x)=%%‘.e‘q"‘pq/;:os Hr—&r) e'9"d’r, (12)

where 6§ is an angle between r and the z-axis.
Configuration of q, r, z-axis is shown in Fig.2.
We use the Rayleigh formula for a plane wave
and the formula of spherical functions; i.e.

lq'r—Z}(21+ 1)i'j:(qr)Pi(cos 0) ,

2g_ 1 2

cos‘d= 3 + 3

where j is the spherical Bessel function and P,

is the Legendre polynomial. Making use of
these formulae, Eq.(12) becomes

P. (cos8)

I(x) =%2e'@qu§(21+ 1)i
q 1=0

JI(Q)Kl(aq), (13)

where
(@) E/;wlﬁjl(qr)d_%dr, (14)
Ki(8q) Ef{ %-I-%Pz(cosﬁ)}Pl(cosﬂ)dw

—43—”8104—8 81,2P2(cosdy).  (15)

Terms of Eq.(13) for 1=0 and 2 must be
considered because of Eq.(15). Therefore,

I(X) =%§ eiq'x

oo {530~ E (@) Pulcos 00)}. 16)

We assume ¢-type function for the interaction
of particles, i.e.

_ _ . i 3/2 e
60 =w@=vlim (>) e
The integrals of Eq.(14) for 1=0 and 2 become

:__V_ H _ﬂz_ —q/ds — __ 3_V
Ju(@) = = tim (3 ) e iz,

z
t o .

Oq

Fig.2
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J.(@) = ——hme"““s—Jo(q) . (17)

Making use of Eq.(16) and Eq.(17); Eq.(10) is
reduced to

e (x) :% P00 p () ¥ (18)

The total stress tensor can be got with an
addition of Eq.(18) that is interaction part and
Eq.(3) that is the kinetic energy part; as
follows :

IT..(x) =115 (x ) + 117 (x)

_(b/20) (04" (x) 29(x)

32¢ (x)
4m 0z 0z ¢(x)

— g (0 T4 ‘“")}+%¢*(x)¢+(x)¢<x>¢(x).

(19)

3 Thermal Resistance between
*He and a Solid System in
Hamiltonian Formalism

3.1 Hamiltonian of *He and a Solid System
Heat flux between a solid and the liquid
*He is caused by an interaction at a boundary.
From this heat flux we can get Kapitza
resistance. In this section the interaction
between a solid and *He, H's, is derived from
stress tensor of the liquid and displacement of
the surface of the solid.™®’ However, we
neglect the magnetic feature of the solid, so
that a magnetic interaction between the spins
of *He and the solid is also neglected.
With this assumption, the Hamiltonian of the
interaction becomes

H/SL:f¢+(X)EVA(Rn+Un_X)Sl'(X)dsX ,
! (1)

where V, is the potential energy between the
solid atoms and the liquid particles, R, is the a
lattice point of the solid, u. is a displacement
at the lattice point. In low temperatures energy
of phonons are rather small.
displacement u, is small enough to be
considered in the first order of V. expansion
with respect to u,. We can also assume that V,
is a short range potential. Also in the solid,

Hence, the

¥ (x) decreases rapidly. Therefore, the
dominant contribution in Eq.(1) is from the
surface of the solid. With these assumptions,
the summation becomes

EVA(Rn‘l’un_X)
~2VA(Rn_X) un(x y,O) VZVA(Rn—X).

In this expression, the interface between the
solid and the liquid is assumed to be at z=0.
Because of the symmetry of the system, the
potential energy depends only on z. Hence, we
can express

‘HZVA(Rn—x) =Vo(z).

From the above discussion, Eq.(1) can be
expressed as follows:

Hise = [ p(x) Vo(2)dx
~ [urtx .0 p0 LelZax. )

The first term is static and expresses a
contribution from the solid to the liquid *He.
This can be included in non-perturbed part of
the total Hamiltonian. The second term
contributes to the heat flow. We express it as
Hs. in later sections.

The conservation of momentum is got in
section 2.3 as
agz(x) +3Hzx(X) asz(X) Tl 22(x)
at ox ay 0z
= —p(x)2Velz),

(3

Vo(z) can be assumed to have a rapid change
in the range z=+ ¢ to—&. Assuming that p (x),
I1(x) , and g(x) vanish rapidly in the solid; we
can get an integral of Eq.(3) as follows:

_ € dVo(Z)
./‘—ep(X) dz dz
agz aHzx asz asz
{8t+ ox T oy + 0z }d
__)og: Alzx | 3llzy €
—{at+ 0xX + ay }z=e—0-/;dz
+{sz}z=+e_{sz}z=—e.
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In the solid {II..} .--. vanishes. Assuming 9g./
ot and II have monotone increasing feature,
we have made use of the second mean value
theorem for the first term of the last line in the
above equation, and —¢ < & < ¢ . If ¢ is small
enough, we can neglect this term. The
dominant term should be {II..} ,-+.. We then get
Hamiltonian for the interactions between the
solid and the liquid *He as follows:

Hs= [0.(x,y,0) [La(x,y,0)dxdy.  (4)

The Hamiltonian for the liquid *He can be
expressed with the above discussion as follows:

H, f(h/z”) 7t (x)- 7 $(x)d
+ f p(x)vo(x)d®x

+5 f dx [#(x—x') ) o) HO L

The first and second terms are non-perturbed
Hamiltonian. The third term expresses
interactions in *He particles. We will refer it by
Hi. in later sections.

3.2 Heat Conduction:Fermi Gas

A stress tensor in the liquid *He without
interactions are given from Eq.(3a) in the
section 2.3 as follows:

IT8%(x) =§ Mg p Cik+pCre™ %, (1)

M= B2 4 L)z, @

ck+p and ¢k are creation and annihilation
operators for *He particles. The displacement
of the liquid normalized in the half infinite
space is

h/271' )1/2

u(x,y,z)= ZE(ZPS_Qqu
eq(agt+a’y)e'¥™*cosq,z.

At the interface of the solid , it becomes

u(x,y,0)= 2(2}2/2”

12
) eq(aqtaly)edx+aw)

(3

where a, and a I, are the creation and
annihilation operators for phonons in the solid,

e, is a polarization vector with wave vector q,
@, is an angular frequency, p, is mass density
of the solid and Q. is volume of the solid.
Substituting these results to Eq.(4) in the
section 3.1, we can get a Hamiltonian for the
interactions between the solid and liquid:

HSL_—_kE Tﬂ,p(aq+afq)0§+p Ck, (4)
sPq

1/2
TRo=A8qupn qu<P251;2/52wn;l) Mﬁ.p =Tkl
(5)

where A is an area of the solid surface, e, is a
z-component of e, q,/, p,, are wave vectors
parallel to the solid surface.

Heat flux Q from the solid to the liquid
‘He can be expressed with the phonon
distribution function. Considering Hs., we get:

Q= —%f(h/er) Wqliq
—_ 2 2
= g(h/Zn)wquw%JTg,pl

{fen( 1 —F0) (1 +ng) —12( 1 —£2,1)nq)
8(exip—ex—(h/27) wq),

where &y is an energy of a *He particle with the
equilibrium distribution fi at a temperature T.
Phonons in the solid are assumed to be in the
equilibrium distribution n, at temperature T+
AT. Assuming AT/T << 1, we can expand n,
to the first order of AT. We express the
distribution  function of phonons at

temperature T as nj. The distribution functions

ne and fi at the same temperature have

vanishing collision integrals because of the
energy conservation law. Hence, the heat flux
becomes

Q=_ E(h/2”) wq(h/z ) |Tkp|

ATﬁ<fﬁ+p—fﬁ)8( exep—ex—(h/27) wg).

The heat flux per area is expressed as follows:
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=Q/A= ATZ(Z f; i ge?,,‘;—“T‘IRFG(wq),
(6)

Rre( Wq )= Ah?%gaq//.p// IMﬁ.p |2<fﬂ _f?(+p>

S exsp—ex—(h/27) wq)
(7)

Temperatures we are considering now are
in an order of 0.1K. The Fermi temperature
becomes er/ks = 5K, then

9 4 VE
e K== 2 K« 1’ (8)

where kr is the Fermi wave number, q is the
wave number of phonons , ve is the Fermi
velocity (= 100m/s), and c. is the velocity of
phonons in the solid (= 3000m/s). Considering
the conservation laws of energy and momentum,
we can get the following inequality:

1 LY a’
2kF (Zkz pz+pz ) + k[-‘ . //+ 21{

Terms including k,, and/or q,, could be
neglected because of k/kr < 1 and q, < q << kr.
Therefore,

— _op _Csqke _ _
p- 2k, Ve K, 2kz,
and
p,= CsC[kF _ Mo,

Vr kz - (h/27l') kz .
Because M!,, = 0 when p. = —2k,;we should
consider only the case of p.=mw./ (h/27) k.
Eq.(7) then becomes

Rre (&Jq) :w‘i'—”kzp 9

Substituting this result into Eq.(6), we get the
thermal resistance as follows:

1 _37!2 Pu VF
=T/ AT =P I

ke T ) 5
h/2x

(10)
We should notice here that this value and Eq.
(23) in chapter 1 from the zero sound have the
same orders.

3.3 Heat Conduction:Fermi Liquid

The component of the stress tensor given
by Eq.(18) in the section 2.3 can be expressed
with spins as follows:

I (x)= 922 Cit40Cks 0" Cky0"Cky o€
&o? 1)
Making use of Hartree-Fock approximation,

we can get the following expression instead of
Eq.(D).

ME) =5 3 chenocroe™ — s,
(2)
where n; is number density of *He particles.

Adding IT* and IT%* makes the component of the
total stress tensor as follows:

N 5 oo
sz(x)_k§6 mg kz+ 2 pz + 3kFF0
Clt+p,o‘Ck,o‘e_1p‘x——L.;1>)'Fol’l3 er, (3)

where

mkp
(= h/27)". @)

If we assume J-function for interactions of
particles, the effective mass of *He is the same

Fo=N(er) %, EF—

as its original mass m. N (&r) is the state
density on the Fermi surface. The average of
Eq.(3) becomes

(nu) < ner (1+—g— FO)’ 5)

where 2n; ep/ 5 is the pressure of the ideal Fermi
gas at temperature T=0.

Comparing Eq.(1) in the section 3.2 and
Eq.(3) in this section, we can get the following
expression instead of Eq.(2) in the section 3.2:

h/2x)? 1 \,1
Mi(p) =21 (1, + L, ) +LiiFo|.
(6)
Toombs et al.'”” got a similar expression from
the Fermi liquid theory. Their results can be

got if we put p=0 in Eq.(6). They assumed p.
<< k, Here we also use this assumption.

i(k1+k2—ks—ka)x
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Scattering  amplitude for renormalized
quasiparticles becomes
_ Fo
Aol @) = T+R g1, 7

where 1 =w/vr q and

g(A)= N(ep) Z‘.xk(q,w)

N('E:F)[ 1~ logy ] ]

(8)

fg_fa-O-p
Ek+pT EkT (h/27l') @ .

xok (q, w) = 9)

A diagram of dynamical screening for the
interactions between the solid and the liquid is
shown in Fig.3. The expression for the
diagram is

Mi(p, @ +i8)

=M= M2 (b, w+i8) Awa(, 0 +id).

(10)

We should remind the assumption | p,, | <<
| p. | and note A« (p, @+id) does not depend
on k’. The result of calculation of Eq.(10)
becomes

(h/27)%ke £44(£2—A%)Fog(A)
Mi(p, )= m”g 1+Fog(d)

(11)

where A =w/pvr ~ w/p.ve, £=kp, and p is
almost parallel to the z axis. With this
expression, we considered the many-body
correlation. Therefore, we can use the same
equation for the Fermi gas, i.e., we can use Eq.
(7) in section 3.2 with substituting M. for M.
Making use of the following formula:

Im {x%(p, ws + id)}
= (fi—1fhsp) 76 (exso— &x— (h/27) @), (12)

and reminding the assumptions q, = 0,p, = 0 ;
we can get a thermal resistance for the Fermi
liquid as follows:

RrL(wq) = h/2 zaq//p// [M(p, wq+id)[?
IM{Zk(p,wq+13)}
d(ex—ep)€
5 ImEIMk(p,wqﬂc?)lzmiLﬂ)’
(13)

h/

where £=Kk*p, A = w/p.vr, 7=0/p.ve — 0. With
substitutions

Z3(ex—er) > @N(er) 5 [ de,

2 re 2 (~wg,dA
—)Aﬂ/; dp.= AxJo vi A7
we get the thermal resistance for the Fermi
liquid as follows:

Reuto=(iepen ) 06 [ 57

zm[le(s,Hiv)l’m]'

(14)

In the rest of this section, we show that the

Rei consists of terms for the individual
excitations and the zero sound excitations.

3.3.1 Thermal Resistance from Individual
Excitation
If we put A =¢& in the matrix element of Eq.
(14), it represents a term of the individual
excitations, i.e.
(&, A+in) ).
_(h/27) k¢’ &
mQ 1+F, g(&+in) .
In this expression p.=w/ (h/2z) ks This fact
corresponds to the change of momentum in the
Fermi gas. If we restrict the integral with
respect to positive value of &, we get the
thermal resistance Rsy for single particle:

(15)

RSP(wq) g]/lgi(rj\i;) Wq ds‘f

(16)

Noting -(‘;__—_7% —¢6(&— 1), we can notice

M. is of the Fermi gas. Therefore,
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_ 2°N(er) (h/27)%ks*\?
RSP(“’“‘(h/%)w“’( m”.Q )

2

[ e

o & 1+Fog(5+i77)

_k?:wq ! 43

= 4n? fo|1+Fog(5+iﬂ)Pd$.
an

Ratio to Rec(w,) becomes

RSP( wq)/RFG( wq)

=f1 4¢° dé=7(s)
o [T +Fog(e+in) P>~ 70 (1)

where s is a quantity which decide the
dispersion relation of zero sound, and it is got
from F, The denominator of y (s) can be
expressed as follows:

| 1+F, g(&+izn) |
= I 1+Fn gl(é}) l 4 | Fo gz(f;:) IZ, (19)

where
g1(&) =1—% log %
—
gz(f‘;") = 9 5

They are the real and imaginary parts of
g(&+izy), respectively.

3.3.2 Thermal Resistance from Zero
Sound Excitation
If we put A =s in the matrix element of Eq.
(14), it represents a term of zero sound, i.e.

M.(&, 2+in) s

o 0/272)° k¢ =g’ g(s)
mQ 1+Fgtip. &0

Because this denominator vanishes, we expand
it around A =s. Hence,
M (&, 2 +ig)

_ (/27)° ke —s’ g(s)
mQ (A+in—s) g'(s) . (1)

where
1+F,g(s) =0 (s>1),
go=386 _ s 1, 5t (o)

ds -1 2 s—1.
Making use of these results, we get the thermal
resistance R. (w,) from the zero sound as
follows:

— QZN(GF) !
st(wq)—m wq[1d$

/ Q((h/Zn)zk%>2| gA)  |* né/x
=92\ me [((A—s+in)g’(s)l (6—A)*+7*

:a)qk‘é(sg(s)>2 v g pdé.

2 \g'(s)/) /(-
TEE ® (23)
Ratio to Rrc(w,) becomes
Res(@o) /Rro(@d) =5~ 6 () (24)
$(s) = M (25)

4 Conclusion

We study the thermal resistance between
the solid and the liquid *He from the point of
view with a microscopic theory. For this
purpose, we have to get Hamiltonian H, ( Eq.
(5) in the section 3.1 ) which represents
interactions between the particles of the liquid
*He and Hamiltonian Hs. in the section 3.1
which represents interactions between the solid
surface and the liquid * He. With these
Hamiltonians the thermal resistance is derived
as in the section 3.3.

To get these results, we should express the
stress tensor II,. in the second quantization.
The tensor is derived in Chapter 3. If we
assume the short range interaction between the
particles, vé (x-x’);the tensor coincides with
the results which was derived by Toombs et al.
"2 using the Fermi liquid theory. Also we can
thoroughly make it clear what kind of
approximations they have employed. With the
diagram method, we can consider the
collective excitations and the individual
excitations simultaneously in the formula that
we use to get the thermal conduction. As is
mentioned above, we have shown the thermal
conduction between the solid and the liquid *He
microscopically. The method we have
discussed is a fundamental theory for
explaining a mechanism of the thermal
conduction for any Fermi particle system from
the first princiles.



A Microscopic Study of Thermal Resistance between He and a Solid 141

Appendix

Al Derivation of Formulae for Heat Flux

A formula for heat flux in the paper of
Legett, Vourio" is derived in this section. Two
systems 1 and 2 are assumed in equilibrium
with 8:=1/ksT, and B:=1/ksT;, respectively.
Let Hamiltonians of the systems be H; and H,,
their energies E,"”, E,?, i.e.,

Hl|ﬂ>:Eﬂ“)|#>y
H|v>=E®2|v>. (1)

The subscript x is used only for the system 1,
and v for the system 2. Probability for the two
systems to have a total energy E,,=E,”+E,? is

P, =ef 0B of@: B (2)

When an interaction is exerted between these
two systems with Hamiltonian

Him=g§Ak Bk:Hﬂn , (3)

we can derive a heat flux. In Eq.(3), A« is an
operator for the system 1, and By is for the
system 2. The transition probability per time
for the system 1 and 2 from a state | uv > to
| w'v' > is

_ 27

R""_>“’"'_h/27z

| <u'v' | Hiw | o> | 26 (E,.—E,) (4)

The heat flux by this transition become

Q1—>2= % ’;/P#U(Eful) _E(,ul') ) Ruvospv.
(5)

With reminding R, -, =Ru-, Eq.(5) can be
expressed as follows:
Q1—>z= _g EIP#'U'(E(/})_ES“I') ) Ruv-spv.
(6)
Half of the addition of Eq.(5) and Eq.(6) gives

Qiose=5Z B (P —Pu) (B —EY)
R,uu—>,u’u’. (7)

Making use of the energy conservation which
is expressed by the ¢ function in the right hand
side of Eq.(4), we can express the subtraction

of the probabilities in Eq.(7) as follows:

— @, —E" (Q,-E)
P,.—P,,=e® eh

[1—eaE"En] (8)

Assuming =2, B.=8+AB, and AB/B <K L;we
can get an expression of Eq.(8) till the first
order of AB in the expansion as follows:

Puv - Pu'v‘ = eﬁ. (BB eﬂ' @:~E

Aﬁ (E,,“)—E,,“). (9)

Substituting this expression into Eq.(7), we can
get the heat flux as follows:

Q1->z =%2 Eeﬂ(nl-sf,‘,’)eﬁ(gz_gy)

sy p'y

E (1)_E 1) 2R e uy
( ” # ) pU—>p (10)

This expression is general and not depends on
the expressions of the interaction Hi.. We
have just use the energy conservation in the
transition probability R,.-» and AB/g << 1.

Substituting Eq.(3) into Eq.(4), we can get
the transition probability expressed as follows:
2 N
R#u—#’u’:h/%g2§ <#|Ak+|/l ><# I‘Allf“>
<V|Bk+|l/,><l/,|B1|V> 8(E#y_Eﬂ’U’). (11)

Using an identity
3(EI‘U—E#'U’): [:(h/ZW) dw 8(Eﬂ(l)_E#'(l)

+(h/27!') (0) B(Eu(z)—Eu’(Z)_(h/Zﬂ') (0) y
(12)

and substituting Eq.(11) into Eq.(10), we can
get
Q= 4B [ dogi(h/2m) w)*
Paial0) Ppis(—w), (13)

where ®xy(w) is a spectrum of the correlation
function defined by

Pxv(w) E“Z“‘.,e”‘Q‘E"’<#|X|#'> g
S(Ex—Ew+(h/27) 0)
[T xmYedt.
(14)

_ 1
" 2x(h/2x)
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Because we can inverse the sign of @ in Eq.
(12) and Hix is a Hermitian matrix, the product
of the correlation function can be expressed as
follows:

q)A.cA.(_&)) @B.‘B.(Q’),
or CDA#\;(Z'Z&J) @BKB.’(+C9))~

In the second expression double signs must be
took in the same order. We define a spectrum
density function as follows:

xxv(w) = Oy (w) —Byx (— @)
=(1—e ") Oyy (). (15)

Hence, Eq.(13) becomes

Qo= 748 [ dg'(h/2r) o°

xain( @) xeis,(— w)
(1 —e P2m@) (] —fzm @) ‘(16)

If the correlation function vanishes when k
is not equal to | in the integrand of Eq.(16),
and also if Ax and By are Hermitian, the heat
flux can be expressed as follows:

Ql—>z=271'41,3§fowda)gz((h/27r)co)2
On0) Pp,(—w)
=224p3 ["dwg(h/2m)0)"

xal@) e lw)
(1 —e Fema) (oFzme _ 1)

(17)

Because the operators are Hermitian and their
correlations become self correlations, the
suffixes of ® and y are reduced to just one
suffix .

A2 Heat Flux between a Solid and a Fermi Gas

We show how to get the heat flux between
the solid and the Fermi gas from the results
discussed in section Al. We assume interactions
are given by Hs. defined as follows:

HSL:kz Tﬂ_p(aq','atq)(:]*{:f-p Ck, (1)
Pq

2(h/2x)
Ps2swq

vz o _
) Mk,p=Tk2p,—p-
(2)

TRp =Adq/p1€az <

Hs. can be expressed with a product of two
operators that include creation and
annihilation operators of phonons in the solid
and of *He particles as follows:

HSL = ? Aqu y (3)

Aq=(aqtalq)=Al,, (4)

Bq=k2 T, crepck =Bl . (5)
P

The correlation function of A, become

®n- a(w) = (1+nd) ¢ ((h/27) we— (h/27) @)
+ndd((h/27) we+ (h/27) ),  (6)

2802 (@) =6((h/27) @e— (W/27) @)
—6((h/27) @+ (0/272) @), (7)

where nj is the distribution function of phonons
with an angular frequency w, The other
correlation functions with combinations of
phonon  operators
correlation function of B, becomes

Doss, ()= (gTﬂ,ofa)” 5((h/27) @)
+k2'p|Tﬁ,p|2fﬁ( 1 —fﬂ+p)
a(sk_€k+p+(h/2”)w) , (8)

become zero. The

X838, (w) = l{Eng.plz( fﬂ - f?ﬁ-p)
P

S(exsp—ex—(h2m)w).  (g)

where fi is the distribution function of *He
particles. Substituting Eq.(7) and Eq.(9) into
Eq.(16) of the section Al, and making use of a
feature of Ti, in Eq.(2) , we can get the heat
flux as follows:

. 2ndp
Q=1/ox

> ((h/27m) wq)*| TP (fR—fhip)

k.p,q ( 1 _e—ﬁ(hlzn)wq)( 1 _eﬁ(hlzn‘)wq)

8(exsp—ex—(h/27) wq) . (10)

Noting the following relation

((h/27) wa)* AB
(1—e FW2Dw) (] — g2y

an,
oT,

we can reform Eq.(10) as follows:

= (h/2%) wq AT

(11)
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Q=575 T8l (h/2m) 0 AT 58

(fk fk+p)3(€k+p—€k—(h/27r)wq) . (12)

This heat flux coincide with the expression we
got in the section 3.2 , that is derived from the
Boltzmann equation of phonons.
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