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A Note on Conditional Expectations

Toshitada SHINTANI *
(Received 28 November, 1996)

Abstract. If f is any real-valued function in LY 2, a, P) and B is any sub-o-field of @ then E ({/B )=1
a. e. Here, in general, the exceptional set & B. By using this it is shown that the paths of Brownian
Motion are a. e. differentiable.

Let (2, a, P) be a probability space and E (/B ) the conditional expectation of f with respect to the
sub-o-field B of a. Let B {¢, 2}.

Theorem 1. Let A€a and let B be any sub-o-field of a then E ( xa/B)=yxa a. e.
Here the exceptional set e, in general, e<B.
Proof. Let A€aq, VBCa and A<€B. (If AEB then the Theorem is well-known.)

JEG/B) (@) aP= [ a(w) aP
Q ]

= [2(@) P+ [, ga() dP

=1-P(A)+0-P(A)
=P(A) (It may be supposed that 0<P(A) <1.)
On the other hand, since A€a and BCagq,

JEGwB) @) dP= [E(u/B) (@) dp+ [ EGu/B) @) ap
Q

Let Z(w) be any a-measurable random variable. Then, by the mapping when B is given
F:Z(w)—E(@Z/B)(w) (YwER),

E(xa/B) (w)=a. e. constant a on A

and E(xs/B) (w) =a. e. constant b on A°®.

Notice that the exceptional sets are a-measurable so that these union€B since A €B, in general.

Then

(%) P(A)=fE(xA/B) (w) dP=a-P(A)+b-P(A%)
2

=a-P(A)+b-(1—P(A)). 1—P(A)=0.)

By (%) b=0 — a=1 and a=1 =— b=0
So a=1 <= b=0.
By contraposition of the above statement,

a¥1l & b=x0.
We shall show that if we suppose that a® 1 and b= 0 then we have a contradiction. For instance
suppose a=1/k and b=1/k (k>1) (so suppose a=b). Then, by(*),

1>PA)=1%k-PA)+1/k- - (1—P(A))=1xk.

So take k such that k>ﬁ then P(A) <P(A).

y

This is a contradiction. So it is not a1 thus it is not b=0. That is, a=1 and b=0.
Therefore E(xa/B) (w) =xa(w) a.e. and the exceptional set €, in genral, e € B. (g. e. d.)
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Remark. If a=b then E()s/B) (w)=a. e. constant on £.

As feLY(Q, a, P) is a limit of sequence of simple functions, E(f /B) (w) =a. e. constant on £2. This can

not happen since E (f /B) (w) is the function of w.

Therefore E(xa/B) = a. e. constant on 2.

Theorem 2. Let fELY(R, a, P) and VBCa.

Then E(f/B) =f a. e. (The exceptional set e, in general, e€EB.)

Proof. Since fEL! &= | f|=f*+f €L! so that f*, f" €L}, f* and f~ are a-measurable.

For f* and f~ there are sequences of a-measurable simple functions {gn}ns: and {ha}ny: such that

gn(w) 20, gn(w) T (@) ; ha(w) 20, ha(w) Th™(w) (YWER).

Set f,=gn—h, (n=1, 2,...).

Then, for a-measurable function f, {f,}n5: is the sequence of a-measurable simple functions such that
|fn(w)| =[f(w)|€L" and lim fy(0) =f(w) (YwEQ).

Here, for f* g, is defined as follows :

for i=0, 1,..., n2"—1 and n=1, 2,...

set A= [2“ l;_l] A, 2°={f*=n}
and define g, by
n2r l
gn=i=zl 5 . xAm

Then Ap€a and {gn}ns: satisfies above property.
Define similarly h, for f~.
Next, by E(xa/B)=yxa a. e,
E(g/B)=gn a. e. and E(hy/B)=h, a. e.
so that E(f, /B) =f, on 2 \en, P(e,) =0, so on Q\Een.
By the Lebesgue’s convergence theorem
hm E(,/B)— E(hm f./B)=E(f/B)
and the most left 51de — hm f, =f1.
SoE(f/B)y=fa.e. for VBCa (q. e. d.)
Theorem 3. Let f=(f;).5o be any real-valued martingale on the probability space (2, @, {a, P).

Then P(hrrsl %@— —0> 1.

Proof. As fis a martingale it may be supposed that the paths are continuous.

Since fi—— N E{./as) =1, fi(w)=f(w) a.e.
So take any s>O and fix this
and let
fi(w) =fs(w) on 2 \e,, P(e) =0,
and
fir (w) =fs(w) on 2 \ev, P(er) =0,
So MAZLW@) g oy gne, (1x5) G, ., for Vo2 e,

and this holds also for any t’ instead of t.
Take any w €2 \e.uey. Then
t—»t’
In fact, when t—t’, f,(w) becomes f(w) since paths are continuous.

. fi(w) —f(w) _ frl(w) —fi(w) _
!9’9 t—s t'—s
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on 2\ey (thus, =0 on 2\eUey).
So, for V t'>0, on 2\eUey
(Notice that t—t’ is, in general, t=t" and t—t’".)
Now, fs(w) =f(w) on 2 so that e;=¢.
Let t'=s in (%) then er=es=¢ and

0=L(@Zh@ _pyp k@ ZH@) o g\, prey=o.

t—s

Therefore, ltl_l:I;l w= Oa.e,

that is,

P(lim Mw) =1. (q.e. d)
tos t—s
Corollary. Let B= (B,):0 be any real-valued Brownian motion
then
P(lim B.(@) —B,(w) =o) =1.
t—s t—s

Remark. Since B:(w) =Bs(w) a. e, the proofs of Paley-Wiener-Zygmund theorem fail.
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