## A Note on Conditional Expectations

Toshitada SHINTANI\*
(Received 28 November, 1996)

**Abstract.** If f is any real-valued function in  $L^1(\Omega, a, P)$  and B is any sub- $\sigma$ -field of a then E(f/B) = f a. e. Here, in general, the exceptional set  $\notin B$ . By using this it is shown that the paths of Brownian Motion are a. e. differentiable.

Let  $(\Omega, a, P)$  be a probability space and E(f/B) the conditional expectation of f with respect to the sub- $\sigma$ -field B of a. Let  $B \neq \{\phi, \Omega\}$ .

Theorem 1. Let  $A \in a$  and let B be any sub- $\sigma$ -field of a then  $E(\chi_A/B) = \chi_A$  a. e.

Here the exceptional set e, in general, e∉B.

**Proof.** Let  $A \in a$ ,  $\forall B \subseteq a$  and  $A \notin B$ . (If  $A \in B$  then the Theorem is well-known.)

$$\int_{\Omega} E(\chi_A/B)(\omega) dP = \int_{\Omega} \chi_A(\omega) dP$$

$$= \int_{A} \chi_A(\omega) dP + \int_{A^c} \chi_A(\omega) dP$$

$$= 1 \cdot P(A) + 0 \cdot P(A^c)$$

$$= P(A) \quad \text{(It may be supposed that } 0 < P(A) < 1.)$$

On the other hand, since  $A \in a$  and  $B \subseteq a$ ,

$$\int_{A} E(\chi_{A}/B)(\omega) dP = \int_{A} E(\chi_{A}/B)(\omega) dP + \int_{A^{c}} E(\chi_{A}/B)(\omega) dP$$

Let  $Z(\omega)$  be any a-measurable random variable. Then, by the mapping when B is given

$$F: Z(\omega) \longmapsto E(Z/B)(\omega) \quad (\forall \omega \in \Omega)$$

 $E(\chi_A/B)(\omega) = a$ . e. constant a on A

and  $E(\chi_A/B)(\omega) = a$ . e. constant b on  $A^c$ .

Notice that the exceptional sets are *a*-measurable so that these union  $\notin B$  since  $A \notin B$ , in general. Then

(\*) 
$$P(A) = \int_{\Omega} E(\chi_A/B) (\omega) dP = a \cdot P(A) + b \cdot P(A^c)$$
$$= a \cdot P(A) + b \cdot (1 - P(A)). (1 - P(A) \neq 0.)$$
By (\*) 
$$b = 0 \Longrightarrow a = 1 \text{ and } a = 1 \Longrightarrow b = 0$$
So 
$$a = 1 \Longleftrightarrow b = 0.$$

By contraposition of the above statement,

$$a \neq 1 \iff b \neq 0$$
.

We shall show that if we suppose that  $a \neq 1$  and  $b \neq 0$  then we have a contradiction. For instance, suppose a=1/k and b=1/k (k>1) (so suppose a=b). Then, by (\*),

$$1 > P(A) = 1/k \cdot P(A) + 1/k \cdot (1 - P(A)) = 1/k$$
.

So take k such that  $k > \frac{1}{P(A)}$  then P(A) < P(A).

This is a contradiction. So it is not  $a \neq 1$  thus it is not  $b \neq 0$ . That is, a=1 and b=0.

Therefore  $E(\chi_A/B)(\omega) = \chi_A(\omega)$  a. e. and the exceptional set e, in genral,  $e \notin B$ . (q. e. d.)

<sup>\*</sup> 一般教科助教授, 数学

**Remark.** If a=b then  $E(\chi_A/B)(\omega)=a$ . e. constant on  $\Omega$ .

As  $f \in L^1(\Omega, a, P)$  is a limit of sequence of simple functions,  $E(f/B)(\omega) = a$ . e. constant on  $\Omega$ . This can not happen since  $E(f/B)(\omega)$  is the function of  $\omega$ .

Therefore  $E(\chi_A/B) \neq a$ . e. constant on  $\Omega$ .

**Theorem 2.** Let  $f \in L^1(\Omega, a, P)$  and  $\forall B \subseteq a$ .

Then E(f/B) = f a. e. (The exceptional set e, in general,  $e \notin B$ .)

**Proof.** Since  $f \in L^1 \iff |f| = f^+ + f^- \in L^1$  so that  $f^+$ ,  $f^- \in L^1$ ,  $f^+$  and  $f^-$  are a-measurable.

For f<sup>+</sup> and f<sup>-</sup> there are sequences of a-measurable simple functions  $\{g_n\}_{n\geqslant 1}$  and  $\{h_n\}_{n\geqslant 1}$  such that  $g_n(\omega) \ge 0$ ,  $g_n(\omega) \uparrow f^+(\omega)$ ;  $h_n(\omega) \ge 0$ ,  $h_n(\omega) \uparrow h^-(\omega)$   $(\forall \omega \in \Omega)$ .

Set  $f_n = g_n - h_n$  (n=1, 2,...).

Then, for a-measurable function f,  $\{f_n\}_{n\geq 1}$  is the sequence of a-measurable simple functions such that  $|f_n(\omega)| \le |f(\omega)| \in L^1 \text{ and } \lim_{\omega \to 0} |f_n(\omega)| = f(\omega) \quad (\forall \omega \in \Omega).$ 

Here, for  $f^+$   $g_n$  is defined as follows:

for  $i=0, 1, ..., n2^n-1$  and n=1, 2, ...

set 
$$A_{ni} = \left\{ \frac{i}{2^n} \le f^+ < \frac{i+1}{2^n} \right\}, A_{n} {}_{n} 2^n = \{ f^+ \ge n \}$$

and define g<sub>n</sub> by

$$g_n = \sum_{i=1}^{n2^n} \frac{i}{2^n} \cdot \chi_{A_{ni}}$$

Then  $A_{ni} \in a$  and  $\{g_n\}_{n \ge 1}$  satisfies above property.

Define similarly h<sub>n</sub> for f<sup>-</sup>.

Next, by  $E(\chi_A/B) = \chi_A$  a. e.,

$$E(g_n/B) = g_n$$
 a. e. and  $E(h_n/B) = h_n$  a. e.

so that  $E(f_n/B) = f_n$  on  $\Omega \setminus e_n$ ,  $P(e_n) = 0$ , so on  $\Omega \setminus \bigcup e_n$ .

By the Lebesgue's convergence theorem

$$\lim_{\substack{n\to\infty\\ n\to\infty}} E(f_n/B) \xrightarrow[a.~e.]{a.~e.} E(\lim_{\substack{n\to\infty\\ a.~e.}} f_n/B) = E(f/B)$$
 and the most left side  $\underset{a.~e.}{\longleftarrow} \lim_{\substack{n\to\infty\\ n\to\infty}} f_n = f$ .  
So  $E(f/B) = f$  a. e. for  $\forall B \subseteq a$ . (q. e. d.)

**Theorem 3.** Let  $f = (f_t)_{t \ge 0}$  be any real-valued martingale on the probability space  $(\Omega, a, \{a_t\}, P)$ .

Then 
$$P\left(\lim_{t\to s} \frac{f_t(\omega) - f_s(\omega)}{t-s} = 0\right) = 1.$$

**Proof.** As f is a martingale it may be supposed that the paths are continuous.

Since 
$$f_t = E(f_t / a_s) = f_s$$
,  $f_t(\omega) = f_s(\omega)$  a. e.

So take any  $s \ge 0$  and fix this

and let

$$f_t(\omega) = f_s(\omega)$$
 on  $\Omega \setminus e_t$ ,  $P(e_t) = 0$ ,

$$f_{t'}(\omega) = f_s(\omega)$$
 on  $\Omega \setminus e_{t'}$ ,  $P(e_{t'}) = 0$ ,

So 
$$\frac{f_t(\omega) - f_s(\omega)}{t - s} = 0$$
 on  $\Omega \setminus e_t$   $(t \neq s)$   $(i, e., for  $\forall \omega \in \Omega \setminus e_t.)$$ 

and this holds also for any t' instead of t.

Take any  $\omega \in \Omega \setminus e_t \cup e_{t'}$ . Then

$$\lim_{t\to t'}\frac{f_t(\omega)-f_s(\omega)}{t-s}=0.$$

In fact, when  $t \rightarrow t'$ ,  $f_t(\omega)$  becomes  $f_{t'}(\omega)$  since paths are continuous.

$$\lim_{t \to t'} \frac{f_t(\omega) - f_s(\omega)}{t - s} = \frac{f_{t'}(\omega) - f_s(\omega)}{t' - s} = 0$$

on  $\Omega \setminus e_{t'}$  (thus, =0 on  $\Omega \setminus e_t \cup e_{t'}$ ).

So, for  $\forall$  t' $\geqslant$ 0, on  $\Omega \setminus e_t \cup e_{t'}$ 

$$(*) \quad \frac{f_t(\omega) - f_s(\omega)}{t - s} = 0 = \lim_{t \to t'} \frac{f_t(\omega) - f_s(\omega)}{t - s}.$$

(Notice that  $t \rightarrow t'$  is, in general,  $t \neq t'$  and  $t \rightarrow t'$ .)

Now,  $f_s(\omega) = f_s(\omega)$  on  $\Omega$  so that  $e_s = \phi$ .

Let t'=s in (\*) then  $e_{t'}=e_s=\phi$  and

$$\begin{split} 0 &= \frac{f_t(\omega) - f_s(\omega)}{t - s} = \lim_{t \to s} \frac{f_t(\omega) - f_s(\omega)}{t - s} \text{ on } \varOmega \setminus e_t, \ P(e_t) = 0. \\ \text{Therefore, } \lim_{t \to s} \frac{f_t(\omega) - f_s(\omega)}{t - s} = 0 \text{ a. e.,} \end{split}$$

that is,

$$P\left(\lim_{t\to s}\frac{f_t(\omega)-f_s(\omega)}{t-s}=0\right)=1.\quad (q.~e.~d.)$$

Corollary. Let  $B = (B_t)_{t \ge 0}$  be any real-valued Brownian motion

then

$$P\left(\lim_{t\to s}\frac{B_t(\omega)-B_s(\omega)}{t-s}=0\right)=1.$$

Remark. Since  $B_t(\omega) = B_s(\omega)$  a. e., the proofs of Paley-Wiener-Zygmund theorem fail.

## References.

- 1. T. Shintani (with T. Ando), Best Approximants in L<sup>1</sup> space, Z. Wahr. 33(1975).
- (with D. L. Burkholder), Approximation of L¹-bounded martingales by martingales of bounded variation, Proc. Amer. Math. Soc., 72(1978).
- \_\_\_\_, A proof of the Burkholder theorem for martingale transforms, Proc. Amer. Math. 3. Soc., 82(1981).
- . L<sup>1</sup>-bounded martingales and their applications, Seminar on Real Analysis 96, (1996).

Department of Mathematics, Tomakomai National College of Technology, Tomakomai, Hokkaido 059-12, Japan

٠.