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Abstract
Oscillations of transmission rates of acoustic phonons are studied in a superlattice with
(111) interfaces. The oscillations are enhanced at frequencies that satisfy the resonant condition of
transmission. In this condition, reflections from the interfaces are neglectable. Structure factors are in-
troduced for transmission and reflection of acoustic phonons to explain this phenomenon. Transfer mat-
rix with reduced dimension is also introduced.The oscillation is analogous to the Pendellésung effect of

electron beams and the Borrmann effect of X-rays.

1. Introduction

Recently there are many works about
acoustic phonons in various superlattices.
Tamura, Hurley and Wolfe showed the phonon
images of transmitted phonons through a super-
lattice (SL) both theoretically and
experimentally.! Tamura found the resonant
transmission of acoustic phonons in a SL? that
is analogous to the resonant tunneling of elec-
trons. In the previous paper, we have studied
oscillations of transmission rates for acoustic
phonons against a number of layers.3

One of the oscillations are analogous to the
Pendellosung effect of electron beams in elec-
tron microscopy?, and the Borrmann effect of X-
rays®. In these cases, energy of reflected and
transmitted beams oscillates when the beams
propagate through very perfect crystals. The
oscillations of transmission rates for phonons
mean that there exist strong energy exchanges
between two modes of acoustic phonons, when
the phonons are incident obliquely to the inter-
faces of the SL. In the present paper, we shall
try to show the origin of these oscillations in a
superlattice with anisotropic layers.

Figure 1 shows the structure of the SL.

Unit cell of the SL consists of 150-monolayer
AlAs and 60-monolayer GaAs, and their inter-
faces are assumed as the (111) planes as in
Fig.l(a) The monolayer has a thickness of
0.326nm. Hence, the thickness of the unit cell
becomes D=685nm. Figure 1(b) shows the struc-
ture of the SL with five unit cells. A substrate is
a layer of GaAs and a detector layer is of AlAs.
Even if we change the number of the unit cells,
the substrate and the detector layers are still
supposed to be the same materials. In the fi-
gure, the x, y, and z axes are placed to the
directions [112], [110], and [111], respectively.

Generally there are three modes of phonons
in crystals® Howerver, we consider only two
modes which couple each other on (110) saggital
plane: modes S and L (Quasi-Shear and Quasi-
Longitudinal). The other mode SH (Pure-Shear)
does not couple with these two modes even if
we consider oblique incidence of phonons to the
interfaces. Figure2(a) shows slowness curves in
the saggital plane. Figure2(b) depicts polariza-
tion angles of the phonon modes. Each curve
has two-fold symmetry about the y axis.
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Fig.1. (a) A unit cell consists of 60-monolayer
GaAs and 150-monolayer AlAs, and (b)
structure of superlattice.

2. Structure Factors

To explain frequency dependence of trans-
mission and reflection rates of phonons, we in-
troduce two kinds of structure factors. One is
for reflections and the other is for trnsmissions.

For the reflections, there are two structure
factors: with/without mode conversions. They
are expressed as follows:
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where N is a number of unit cells, J, K= S or L;
7, k = A or B. Magnitudes of z-components of a
phonon wave vector with mode J in the layer j
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Fig.2. (a) Slowness curves. In right hand, there are
slowness curves of GaAs. In left hand,
those of AlAs. Unit of the axes is s/m.
Polarization angles of the phonons are de-
picted. Each radius represents the poriza-
tion angle from the direction of the phonon
wave vector.

are () >0 (the sign '+’ represents phonons to
propagate to the positive z-direction, and the
sign '~ is of reflected phonons propagating to
the negative z-direction). Hj; is a thickness of the
layer j. The quantity 7, is an amplitude reflec-
tion coefficient at the interface of the layers j
and k. (It depends also on the modes J and K) If
J=K, Eq.(1) means the structure factor without
mode conversions. If J# K, it is the structure
factor with mode conversions. From Eq.(1), we
get the Bragg condition for reflections in a SL

as follows:
C,('.?,)HA"'C}?HB“"C}(@HB‘FC}({)HA:ZTZM, (2)

where m is an integer. If this condition is satis-
fied, |S;¥>[? has a peak, and reflections of the
phonons are enhanced.
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For phonon transmissions with mode con-
versions, we get the following structure factor:

S5 =taat (tpattage’® ~9)
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where J# K, because Eq.3) is the kinematic
structure factor derived from perturbation and
there are no significant meanings if /=K. The
quantity %xis an amplitude transmission coeffi-
cient at the interface of the layers j and k. (Be
careful again that it depends also on the modes
J and K like the reflection coefficients) We
should note that |S57>[?has a peak at the same
condition for both of the mode conversions
(from S to L and from L to S). From Eq.(3), we
get the condition for enhancement of phonon
transmissions with mode conversions as follows:

(O HA (B Hp= Hy+ (P Hp+2em =06, (4)

where m is an integer. We call this condition as
a resonant condition of transmission in later sec-
tions. Equation (4) tells that the resonant fre-
quency decreases if the thickness of the unit
cell is increased, because the wave number is
directly proportional to the phonon frequencies.

Frequency dependence of the structure fac-
tors are in Fig.3. Figure 3(a) is for S-mode in-
cident to the interfaces with an angle 20 de-
grees between the incident wave vector and
the normal of the interface. The angle is also
the same in every layer B in Fig.1l(b). Plots of
positive values are of the transmission with
mode conversion from S to L. The negative is of
the reflection with/without mode conversions:
both from S to L and from S to S. Figure 3(b) is
for L-mode incidence. The angle between prop-
agation direction of L-mode phonons and the
normal of the interface is 342 degrees in the
substrate and the layer B. Note that at peak fre-
quency of the transmission rate all structure
factors for reflection vanish.
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Fig.3. Structure factors in arbitary units. (a) For S
mode incidence. (b) For L mode incidence.

3. Frequency and Angular Dependence

The transfer matrix method is used to get
transmission and reflection rates. Because we
are considering only two modes, we need 4 X 4
matrices. (Generally, 6 X 6 matrices must be
considered.})

Figure 4(a) and (b) show transmission and
reflection rates given by the transfer matrix
method. Ty is a transmission rate of phonon
energy in the detector layer after the mode con-
version from J to K. Ris a reflection rate of
phonon energy in the substrate. The transmis-
sion rates are expressed as positive values, and
the reflection rates are as negative values in the
figure.

Even if the Bragg condition is satisfied,
there are some cases that the structure factors
prohibit the reflections because of the extinction
rule. Transmission rate without mode conver-
sions is not in the figure. However, it can be
gotten by the energy conservation.
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Fig.4. Reflection/Transmission rates, and disper-
sion relation. (a) Reflection rates are plotted
as negative values, transmission rate is as
positive. The incident mode is S and the in-
cident angle is 20 degrees. (b) For L-mode
incidence with the angle 34.2 deg. (c) Dis-
persion relations. The incident angles are
20 degrees for S-mode and 34.2 degrees
for L-mode.

Figure 4(c) shows the dispersion relation for
Fig4(a) and (b). (Note that the branches are not
symmetrical about zone center. This stems
from the anisotropy of each layer) The wave
number is normalized by the factor D/ . Ver-
tical line represents a frequency (117.6 GHz)
that satisfies the resonant condition of Eq.(4).
Around the frequency, there are anti-crossing
braches in the dispersion relation. At the stop
bands in figure (c), the reflection rates in
figure(a) and (b) have main peaks. Comparing
Fig.3 with Fig4, we can notice that there is pre-
cise correspondence between the peaks of the
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Fig.5. Angular dependence. (a) Structure factors
for S-mode incidence. Frequency is 117.6
GHz. Structure factors for L-mode inci-
dence is not shown in this figure. However,
the factor for transmission with mode con-
version has the same shape and its peak is
at the same angle as of the S-mode inci-
dence. (b) Reflection and transmission
rates. The vertical lines are at the resonant
frequencies.

structure factors and the transmission/reflection
rates.

Figure 5 shows an angular dependence.
The structure factors are plotted in Fig.5(a), and
the transmission/reflection rates are in Fig.5(b).
Vertical lines in Fig5(b) are at frequencies
which satisfy the resonant condition. However,
the stractor for transmission and the transmis-
sion rate do not have peaks at these frequen-
cies. This is explained by the prefactor of the
structure factor for transmission. The prefactor
in Eq.(3) partly suppresses the transmission.
Therefore, the peaks appear at a frequency dif-
ferent from the resonant frequencies given by
Eq.(4). Instead of this feature, the structure fac-
tor, Eq.(3), gives the precise angular dependence
of transmission and reflection rates as in
Fig.5(b).
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4. Oscillations of Transmission Rates

Energy of phonons are exchanged while
the phonons of the two modes get through the
interfaces of the SL. This effect is enhanced at
the frequencies of the resonant condition. Fi-
gure 6 shows the transmission rates against
number of cells at this condition. They oscillate
with a period AN=136, when a frequency is
117.6 GHz and an angle of S-mode incidence is
20 degrees. The oscillations can be explained as
follows:

"At the frequency of the resonant condition, the
structure factors for all reflections become zero
as in Fig.3. This makes the incident phonons get
through the interfaces of the SL without any re-
flections. Simultaneously the structure factor for
transmissions with the mode conversion has
peaks as in Fig.3. This makes the phonons ex-
change the energy between the two modes.
Hence, the transmitted phonons must get
through the SL without any reflections and
with mode conversions (between the modes S
and L). Therefore, there appear the oscillations
of transmission rates against the number of
cells.”

According to the numerical calculations, the
energy reflecting from the SL is less than 5% of
the total energy at the resonant condition.Ther-
efore, we can neglect reflections of phonons
from the interfaces. Using this feature, we can
explain the oscillations of transmission with 2 X
2 matrices. The relation between amplitudes of
displacements in the detector and the substrate
is expressed by the transfer matrix method as
follows:

AD o ®
[AZD’] = [M(A)] TN ® [AZS)]
AP

_f(BA)FN lA(S)] , (5)

where N is the number of cells, Ay is an ampli-
tude of the displacement of the mode J in the
layer j (D for the detector layer and S for subs-

trate). Further,

T=M(B)Q)(B)[M(B)]_lM(A)¢(A)[M(A)]‘l’ (6)

F=Q®fun puyrea %)
_led) e
M L}; ZQ] ®)
o= 0 ©
- 0 eic}flm ’
. -1 N 1
foe= [M(k)] MP= (e, el)
(e, ed) e, e
— (e, &) — (k) - e (10)
(es (e$ )

where e}’ is a polarization vector of the mode J
propagating to the positive direction of z-axis in
the layer j (= A or B). The quantities e}, e}
are x-component and z-component of e, re-
spectively. The polarization vector is normal-
ized as |ef’|=1. @Y represents phase change
for phonons to get through the layer j In
Eq.(10), (ef?, e/”) means y-component of the out-
er product ef’ Xe/”. The 2 X 2 matrix T is a
transfer matrix without any reflections. The
matrices f®4 and f“4P defined by Eq(10) are
matrices of amplitude transmission coefficients.
They are calculated from the polarization vec-
tors of the two phonon modes, and they are
real.

When the resonant condition given by
Eq.(4) is satisfied, the matrix F defined by Eq.(7)
becomes

F=¢eR (11a)

UB) £8A) 1 piéfUB) (54
_|Ju e

e—l‘d’fztlAB)f (BA) +f(AB) (BA)

B (B0 L gm0
1 te*fy

-wlemf (BA) +f"“” aals (llb)

where

0= (L2 ~ (2 Ho= (L2 — () iyt 2m, (12)

and m is an integer and 6 is defined by Eq.(4).
(cf. the appendix for derivation of the express-
ion of F ). At the resonant condition, a phase
factor e’ appears in the expression of the mat-
rix F. This factor is neglectable, because
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|AP|> has physical meaning.With the matrix R,
we get a relation of the amplitudes between ad-
jacent n-th and (z + 1)-th cells as follows:
<n+1> <n>
[AS ]=R[AS . (13)

<n+1> <n>
A; A;

This is a set of simultaneous finite difference
equations. The matrix R has the following
features:

det[R]=1, (14a)
tr[R1=2—2(1—cos@)fi£® f,54, (14d)
Ry,=RY. (14c¢)

The value of Eq.(14b) is real. With an initial con-
dition:

A =1, (15a)
A5 =0; (15b)

Eq.(13) has the following solution:

|As™2=|L|? cos?(¢m) +e, (16a)
7NAS> =L sin®(¢m), (16b)
i 2
JRH_.ZRZZJ_ |Io|25iﬂ2(¢n),
4sin®¢p

e=

= sin’g
|Rx[?’
where ¢ is a real number and defined as fol-
lows:

cos¢=-§— tr[R1=1— (1 —cos®) ({2 B4 . (17)

With this solution, we can give similar oscilla-
tions shown in Fig6. A period of the oscillations
is given by /¢ as 13.5. This value is very close
to AN =136 given by the precise numerical cal-
culations. The second term & of Eq.(16a) is neg-
lectable according to numerical calculations.
Hence, Eq.(16a) and Eq.(16b) can represent the
energy conservation approximately for the
transmitted phonons and 7 is ratio of acoustic
impedances of mode L to mode S, ie.

|A§">|2+T|Af”>|z ~ |10|2 (18)

At frequency off the resonant condition, the
amplitudes of the oscillations decrease. In the
phonon stop bands, reflections of phonons appear
and the oscillations of transmission rates are

Transmission Rates

Number of Cells

Fig.6. Oscillations of transmission rates calcu-
lated from 4 X 4 transfer matrix. Phonon
incident angle in the substrate is 20 de-
grees for S-mode and 34.2 degrees for
L-mode. The frequency is 117.6 GHz.
The period of oscillations against num-
ber of cells is AN=13.6.

suppressed.

5. Summary and Conclusion

The structure factors can reveal the fre-
quency dependence, the angular dependence of
the transmission rates with mode conversion,
and the reflection rates with/without mode con-
versions. However, they cannot reveal the oscil-
lations against number of cells explicitly. They
can only tell the frequencies at which the oscil-
lations should occur. At the frequencies, the
structure factor for transmission with mode
conversions has the peaks, and the structure
factors for reflections prohibit all kinds of reflec-
tions. To explain the oscillation, we need the 2%
2 matrix F rather than the structure factors.

We consider the SL with the (111) inter-
faces, but the oscillations of the transmission
rates exist also in a SL with the (001) interfaces

and in a SL with isotropic layers.3

We get the resonant condition defined by
Eq.4) in the SL. The amplitude transmission
coefficients can be got from the polarization
vectors of the two modes. If the frequency and
the incident angle satisfy the resonant condition
, we can expect the oscillations of the transmis-
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sion rates without any reflection. The oscilla-
tions are explained by the 2 X 2 matrix F given
by Eq.(11). The resonant condition depends on
the frequency, the incident angle, and the struc-
ture of the unit cell. These dependences can be
explained from the structure factor with mode
conversion defined by Eq.(3).

Even if the resonant condition is satisfied,
there is a case that the transmission rates do
not oscillate. In this case, the reflections are not
neglectable. Therefore, the resonant condition
given by Eq.(4) cannot always tell the frequency
at which the oscillations should occur explicitly.
Hence, we have to be careful also about the re-
flection rates when we discuss the oscillations.
Anti-crossing of dispersion relation is also im-
portant to find oscillations. However, it does not
always tell the oscillations. (For instance, see the
dispersion relation in Fig4(c) at frequencies
about 90 GHz and 170 GHz) All of oscillations
against number of cells are not explained in the
present paper. For instance, there is another
oscillation between Tss and Rs; if the frequen-
cy is 35 GHz and the S-mode incidence angle is
20 degrees. These features are still left for
futher study.

When we would design SL’s, we should be
careful of the number of cells because of the
oscillations for oblique phonon incidences. The
oscillations also occur in a SL with anisotropic
layers as well as in a SL with isotropic layers.3
However, we should study the anisotropic effect
(e.g. the phonon focusing and the conical refrac-

tion).

Appendix

Al. Components of the Matrix F

The component expression of the matrix F
at the resonant condition is derived in this
appendix . The definition of F is as follows:

F= Q(B)f(AB)Q)(A)f(BA). (Al)

To get the simplified form of the matrix F, we
first calculate commutation relations:

CEf(AB)@(A)_d)(A)f(AB)' (AZ)
C’E @(B)f(AB) _f(AB)@(B). (AS)

Making use of these matrices, we can express F
in two ways as follows:

F= (D(B)@(A)‘l‘G, (A4)

F=f(AB)d)(B)Q)(A)f(BA)+ G/ (AS)
where

GE Q)(B)Cf(BA)’ (A6)

G’E C’@(A)f(BA). (A7)

At the resonant condition, the matrices @9’
have the following feature:

Q)(B)@(A)=ei61’ (A8)

where 6 represents the phase change of pho-
nons to get through a unit cell, and defined as
follows:

0=y Ha+ (5 Hp=(( Ha+ ([ Hp+27m, (A9)
where m is an integer. (This is the resonant con-

dition.) With this condition, Eq.(A4) and Eq.(A5)
become

F=¢"1+G, (A10)
F=¢"14+G". (A11)

Because Eq.(A10) and Eq.(A11) are identical to
each other, we can put G=G’. Therefore, G=%
(Ea(A6) + Eq.(A7)) . After some calculations by
making use of the relation f48f®0=1 we can
get the following expression:

c , oOfAB gfum |
=—¢1+ f (A12)
(AB) i6 £(AB) ’
b efys
where
a= ¢! EHB D (A13)
b= S HB+HA) (A14)

Using of Eq.(A9) again for Eqs.(A13) and (Al4),
we get the following equation:

¢= (G — G He= ({2 — () Hat2m. (A15)

where m is an integer. With this equation,
Eq.(A12) becomes
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G=— i1 +¢i® fl(lAB) ewfl(zAB) (BA) A16
=€ e o= 2<1AB) f2<é43) o ( )
Substituting Eq.(A16) into Eq.(A10), we get the
matrix F as follows:

fl(lAB)fl(lBAi +ei¢fl(2AB)f2(lBA) fl({iB)fI(ZBA) +ei¢ﬁ12118) 2(ZBA)

e—i¢f2({w)f](]lm) +fZ(ZABD 2(lBA) e-wfz(lAB)fl(zBA) +f2(2AB) 2(ZBA)

F=¢* . (417)

A2. Equations of Howie and Whelan

To explain the Pendelldsung effect in a SL,
we get a set of simultaneous differential equations.
First we have to remove the phase factor e®
from the matrix F, because it does not contri-
bute the values for |As|* and |A.|>. Making use of.
fUPfBA =1 again, we can define the following
matrix Q=ﬁ G:

1 e¥—1 0
=L p-1=
Q e [ 0 e“"ﬁ—l}
[f‘l(ZAB)fz(lBA) fi(é‘lﬁ)f‘z(zBA) ] . (A18)

fz(lAB)fl(lBA) fZ(IAB)fl(ZBA)

If |¢|<1, we can make an approximation
ef¥=1+xip, and get @ as follows:

0= W)
TP T T W iz

If there is an integer m that satisfies a relation
|¢p—2mm|=0, we can also make a similar appro-
ximation e**¢=1%1(¢—27zm). With this matrix
@, we can derive a set of simultaneous differen-
tial equations for the amplitudes of dis-
placements as follows:

A |As|_1 5 |As

where D=H,+Hp, ie. the thickness of a unit
cell. Because tr[@Q]1=0 and det[Q] is a positive
real number, Eq(A20) has a solution that
|As|? and |A.|* oscillate, and is identical to the
equations (4a) and (4b) of Howie and Whelan.*

If there is an in teger m that satisfies
¢=2mm, then Q=0, G=0, and F=¢" 1. Hence,
there is a possibility that incident phonons could
get through the SL without any reflections and
without any mode conversions from the subs-
trate to the detector layer.
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