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Abstract

This article is a self—study note for foreign
students.

The content is a part of lectures, particularly
in Fourier series and its application to Partial
differential equations.

1 Fourler series

1.1 Definitions of Fourier series and
its coefficients

Let e, be a basis vector, which is characterized

as

lm €x>=6m 1)

where the notation <, > denotes scalar
(or inner) product. The equation (1) is
said to be orthonormal and p is also called
orthonormal vector. Let V¥ be N-dimensional
vector space, X any element of V'V, X may
be expanded in terms of the set of basis

vectors { € }ne1z.-w
- N -
X= ) cen 2)
n=1

On multiplying by e, in both members of
the equation (2) and using the equation
(1), the expanded coefficients c, are given.

=<X, o> (3)

The magnitude of vector X is expressed

o — s N
Xl=VIXI'=V&X, 5= [T @
n=1
or
. N
X1 = D¢ (5)
n=1

* BhBUE —REH

which is the extention to N-dimension of
Phthagoras’ theorem.

By analogy with the above manner, consider
the expansion of a function flx), which is at
first assumed to be periodic, that is, f(x)
=f(x+T). T denotes the period, for example,
T=2r. Let f(x) define in the range [— =z, ].
Hereafter we assume that the function is
not totally arbitrary, but should be piecewise
continuous, and the square of its absolute
value should have a finite integral over all
space.

Let f.(x) be a basis function, which is
characterized as

<fulx), () > = 0 (6)

where the nortation <, > denotes scalar
(or inner) product, which is defined

<ful) fule) > Z [* fua)fix)dx )
or in the case that the functions are complex

Y[ fa) fuln)ds (®)
fx(x) is also called an orthonormal function.
f(x) may be expanded in terms of the set of
basis functions {f,(%)}s=12-

fl= D) cuful®) )

n=1

where

c=<f0, fild>= [ fWhwd (10
provided that

< fEL L) >=0>2 f(x)=0
The magnitude of function f(x) is written
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If (0)] = V< fla), Flx)>

Z Zc,,,c < fulx)

m=1 n=1
Z Zcmcmém = icﬁ (11)
m=1 n=1 n=1

Instead of the notation |f(#)|, it is custmary
to use the notation |[f(x)|l, which is called
“norm” in the functional space:

IF@lE= D e (12)
n=1

which is called Parseval’s equality.
As first example for basis sets, we take
the following trigonometrical functions;

{#,ﬁcosmx) fs1n<m)}n12 (13)

where

1 1 _ 1
<ﬁ cosmx, ﬁcosnx>— ﬂ <cosmx,cosnx>

_ _ (1(m=n=0)
om0 (m=n=0) (14)

NN BV U
<1/; sin mx, ﬁsmnx> - <sinmx,sinnx>
=0 m (15)

1 1 . _ 1
<ﬁcosmx,ﬁsmnx>— - < cosmx,cosnx >
=90

(16)

Using the basis set (13), we rewrite the
expansion series(9)

flx)= Z (a.cosnx + b ,sinnx) (17)

n=0

or

flx)= a,, +Z(a,, cosnx+b 1/—smm:)
(18)
On multiplying the equation (18) by basis
: _1 1
functions (by Nor or by Nr cosnx or by

1 sin#x) and integrating term—by-term,
Jr

the expanded coefficients are given

o = gl
a, = J%f_xﬂ f (x)cos nxdx

b, = %f_ f (x)sin nxdx

Such a trigonometrical series uniformly
convergent in some range is called Fourier
series and its coefficients are Fourier ones.
Substitution of these coefficients in the
formula (18) gives

fo =g [ fladx

+ i{[% f_z f(f)cosn&df] cosnx
n=1

+ (L[ reexsinnede) sinnx}

".sin nx) (19)

where
dv=Sr=L [ flcosnur (20)
Y, = 3—7=% [ Fx)sinnads (21)

It is convenient to describe the trigonometrical
series (19) and its coefficients (20) and (21)
as Fourier series and Fourier coefficients
associated with f(x).

As for the expansion series, when f(x) is
even, then it follows that

(x)= a2,. +Z a’ cosnx (22)
n=1
= Z a,sinnx (23)
n=1

and when f(x) is odd, then
Each are called Fourier cosine and sine
series respectively.
Example 1. Find Fourier series for each
of following periodic functions(7'=2x).
1) flaJ=x(—n<x <7)
2) flx)=x(0<x <27)
3) fla)=x*(—n<x <=m)
)

(
(
(
) flx)=x*(0<x <2x)
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Solution.

(1) @ =0 since f(x) is odd.

A L iy 2
b,.—ﬂf_‘xsmnxdx (-1 "

Therefore, the required series is

=22(— "llsmnx
n=1

— . _sin2x | sin3x _sindx .
=2 sinx 2 + 5 5
Here, let x = % in the above expansion

series,2 we have

T 1,1 1., .
T=1-3t5—7+

(2) f(x)=x is neither even nor odd in the
range (0,2 7).

2z

a, = @Ln/(’x-ldx=n
2z

a, = %]; xcosnxdx = 0
2=x

b, = %fo xsinnxdx=—%

00
2 .
T 7 sinnx

—z—2 [Smx+sm2x+sm3x+sm4x+m]

(3) b,=0since f(x) is even.

o 2 (" e g, &
a, R ldx = 3
a, = %Lx x? cos nxdx = (—1)"—37
bn = O
2 oo
x? = %-I— 4 ,; (—1)”%12-cosnx

_ x? A [ _COS2X | COS3X_ CcOSdX ]
=3 COSX — 53 37 4’

Here, let x = n in the above expansion
series

2

w?_ 1,1 .1 4 .

let x =0, then
2

T =1+t (24)

(4) f(x) = x? is neither even nor odd in
the range 0,2n .

a, = 2—1n Ozxxz- 1dx = 4—:7;2

a, = % /;2ka cos nxdx = 742—

b, = L fzxxz sinnxdx = — %

x? = 4” cosnx——smnx (25)

n

1.2 Meaning of Fourier seires and
its coefficient

A linear combination of trigonomatrical

functions A cos kx+B sin kx, where A,B,k

are the arbitrary constants, is the general

solution of the differential equation

Dy ) +kiy () =THE ey = o

On taking into account the boundary conditions
on the above equation,

— y(— dyl=) _dy(==)

the constant k in the solution has to be
k= n =integer

where the integer n is called eigen value.

- dx,,(x) =n’ya(x)

The corresponding solution for eigen equation
with respact to eigen value n is called eigen
function, which are denoted by cos nx or

sin nx. These eigen functions, which can
always be normalized, are orthogonal;

<cosmx, sin nx>=20

Then, by the use of the set of orthonormalized
eigen functions,
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{L, L cosnx, L sinnx borge
2’ J=x Jr

any function in the range — rn, 7 can be

expanded

= i CaYalx)

n=0

[yn(x) €{ 1/71_9; ﬁcosnxﬁsinnx },,=1,2,“.,m]

where
=< fx),ydx) >

That is to say, Fourier series is the expansion
by means of all the eigen functions.

Next, consider a meaning of Fourier coeff

n
icients ¢,. Let Zdo}.(x) be a finite approximate
i=0
formula of f(x). The coefficient d; is determined
due to the minimum condition of the error

of mean square,

tim [/, (710

Z d;y{x) =0
=0

m = [ {f-

Z diyix) Ydx
i=0
= [ (st ydx

— 2 Z di [ femmdc+ Y,
=0 =0

= [ w2 2+ L
= [Tiren

dx+ i (di—ci)*— i c?
i=0 =0

Obviously, since the quantity (I) above is

positive, it follows that

f{ f()}Ydx > i c? (26)
i=0

which is called Bessel's inequality. When d;
=c¢,, it follows that

(s =3 e (27)
i=0

which is called Parseval s equality. Therefore,

Fourier series is said to be a best fit approx
imation. Since f_ { f(x)}? dx is assumed to

have a finite value, the coefficient ¢, has to
be

cn = 0 (n—> o) (28)
which is called Cauchy—Riemann’s theorem.

1.3 Differentiation and Integration
of Fourier series

Consider differentiation and integration of
Fourier series. As an example, we shall
begin the discussion on Fourier series of

the functions x and x* given in Example 1.

x =2 Z (=)™ ‘Lsmnx (29)

By differentiating in both members of x*
2x=4 ), (=1)" (—1) sinnz
n=1
— N — n—ll 3
=4 ,;1 (—=1) - sinnx

Consequently, we obtain
pa— N — n—lL 3
x =2 ;;1 (—1) - sinnx

In general, when g'd(x_m , Fourier series of
g(x) may be given by termwise differentiation

of that of f(x)

d‘];(;) = glx)= Z (—na',sin nx + nb’,cos nx)

n=1

= Z n (b',cosnx — a,sin nx) (29)

n=1

By integrating in both members of x of th

e equation(1.1)
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(L.S.)= /0‘ tdt =% x°

(L.S.)= i (—1)”"% [0‘ sin ntdt

(o]

Z —1)"! 1 {—i(cosnx 1)}

n=1

—223(1)

Consequently, we obtain

—cosnx + 2 Z (— 1)""’:2

x=14 Z (D L+a ; (—1)"Lcos

2
=% nZ( 1) Ecosnx

where

N ye 1@z
n;l( 1) n2 12

In general, when /0‘ f (x)dt= g(x), Fourier

series of g(x) may be given by termwise
integration of that of f(x)

[ ftat=g ()

= ‘521 L dt +{ fo (@',cosnt + b',sin nt)dt}

1.4 Conplex form of Fourier series
The functions cos nx and sin nx are expressed

in terms of exponential functions
cosnx = % (e™+e™) (30)

: — 1 nx —inx
sinnx = (e™+e ™) (31)

. . 1 inx
A set of basis functions ,{ ‘/—Ee }

n=0,%1,%2,-, %00,

is called an orthonormal system:

D SR
<me ,me > 0 mn (32)

By substituting these relations into the ex

pansion series (9), f(x) is reduced to

f(x)=7,°+ Z (a,cos nx+b',sin nx)

n
_do, N 1/ e
—7°+Z{ 7(e +e"“)+b,,21 (e™—e )}

n=1
=C,O+Z{a,,—21b,, o a,.-;zb, e“’“}
n=1
—c,,-l-z (che™ +c_ e ™)
n=1
SEVEE SR I
=D, cle™= ), cor—e™ (33)

which is called complex Fourier series. Its
coefficients are

d

e ™dx, c'0=7 (34)

4 C’l 1 R
= T2m “2x )T
The relations of coefficients between ¢, and
(a,,b',) are given

, an—1b’, — _ a,—ib,

¢, = 7 and ¢, = 5 =¢_,(35)

Example 2. Find complex Fourier series

in the range|— =, =| for each of the functions.

(1) flx)=x (2) flx)=x
(3) f(x)=cos x (4)  f(x)=sin x
Solution.
(1)
’ 1 " -
Cc’ = 5r /_ xe ™dxy = (—1)"“%
x = Z ( 1)n+l._e
n=—oo
_ l o ei2x ei.?x .
= 3 [" 7 T3
i e—in . e—i3x
— e+ 5 3 ]
- 1 (5.~ 2isin2x  3sin3x
= 3 [Zzsmx ) + 3 ]
= 9 [sinx— sir§2x n sir:133x ]

= 2 (-pm o (36)
n=1
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_—[ zdx_

c;=if _'”‘dx——(—l)”

2x
_ n2
=(—1) Py
x:_%_ _Z_(_l)n_ L

=——4Z‘,< 1) 22

where the prime dentoes the term for
which #=0 is omitted.

(3)

' 1 > :
Cn=35 - f_wcos xe~"*dx
— _]‘__];. /m(eix +e—ix)e—inxdx
2 J-oo

271, 2 / (e—(n—l)x_l_e—t(n+l)x)dx

1
:?( 6n1+ 5n—1)

Consequently, remaining coefficients are ¢+, =

1
7 Then,

:l —ix l ile ix —ix
cosx=--¢€ +2e 2(e +e )
(4)

r 1 e . —
C"=2_7rf sin xe "™dx

lx_ —lx —lYLI
2::2:/ (e*—e ™ )e ™ dyx

_zn 21/ (e—(n—l)x_e—:(n+l)x)dx

1
_W(én.l_ 5n.—1)

Consequently, remaining coefficients are ¢;=

1~ __ 1
270 1= 2z..’I‘hen,

, 1 ,
sinx = i.e"‘— Le’”’=——(e'"—e‘”‘)

21 21 21

1.5 Fourier series for arbitrary
interval

As the period T, in taking 2p instead of
2r , where p is arbitrary real number, the
expansion series and its coefficients may be

written
)= cue
=cot+ X (cne'™ +cne %) (37)
n=1
where
/___1_ 4 —jnxe = _
cn—zpf_pf(x)e o dx, Cn=Cly (38)
Corresponding real-type Fourier series may
be written
f=224+ ¥ {a,’, cos 22X 4 b7 sin 22X } (39)
2 n=1 p
where
A nmx
ai= /_ J(x) cos 2 xdx (40)
_ 1 . MmX
= /;pf(x) sin— dx (41)

Example 3. Find Fourier series for each of
the following periodic functions (T=2p).

Mf)=x(—p<Lx<p)  @f(x)=2(0<Lx<2p)
B f(x)=x2(—p<Lx<p) Wfx)=x22(0<x<2p)

Solution.
()a, = 0since f(x)is odd.

r_ 1 b . max
b"_Pf—p P

Therefore, the required series is

=1 2wy

nrx

b (43)

x=2 Z(—l)"‘ —s'n
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) f(x)=x is neither even nor odd in the
range [0,2p].

;1 [ _
00_2_1)/0 x*ldx=p

_ 1 g2 nxx o _
a,= p]; X Cos ) dx =20
r__ L 20 . nm _Q
ba= pf xsin » dx = -
. W2p . mmx
x=p ngl 2 Sin g (44)
(3) b,=0 since f(x) is even.
_ 1w L, P
—pro x°ldx= 3
20 2 40
a,= p/ X dx=(—1)" S
b=
p? < P nrx
2 — £ — n
xt=73 +4n§1( 1) wis COST 5 (45)

(4) f(x)=x? is neither even nor odd in
the range [0,2p].

a6=2%)];2px2 «ldx = 452
a,= % ];“xcos nz;x dx = (fzi;
ba= % foszzsin nzx dx=— ::

nwex b . nmx
+4Z( )Zc T—n—nsm p>

[Exercise] Expand the following periodic
functions to Fourier series :

1) fo=|x|(—z<x<x)

-1 (=1<x<0)
1 (0<x<1)

—1—x (—1<r<—1)
m)ﬂ@={x (—igx<1)
1—x (1sxg1)

@ fl)= {

x(1+x) (—1<x<0)

W f(x)z{x(l—x) (0<£x<1)

Solution.
(1) The function f(x) is even and has a
period of 2/=2=, l==.

Uo=%j; xdx=rn

2 (" 2
g, = ;fo xcosnxdx=?x(1)

= —%[xsinnx]b‘—%foksinnxdx
1 1
=7[cosnx]o—7(cosnn—l)
—2
D APPSR e (n =o0dd)
L1 {0 o
2 -2 _ —4
90 = Thz T Tant
flx)= |x|—— Zﬁcos@n 1)~

Ta=1

(2) The function f(x) is odd and and has
a period of 2/=2, [=1.

2 (1,
b, = —f sin nxdx
1Jo
_ 1 1
= ———[cosnnxl}
nr

= —%(cosnnx— 1 )=niﬂ( 1—(—1)9)
2

_ {H (n = odd)
o (n=even)
f(x)—%w 2n sm(2n 1)

(3) The function f(x) is odd and and has
a period of 2{=2, [=1.
1
ba =%I:f0§csinnnxdx+j;xsinx7rxdx:|
= 2{(H+WUD}
1 1
) = —niﬂ[xcosnnxjg—l-n%f% cosnwxdx

nx
2

= i)t sin
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D = —-L1a-x) Bl y
== nn X )COSurnX 0 ”'/’%COS nrxax

nm

-1 . nz
yz Sin

T

nm

2{(D+UD}= )z sin — 5

4 &1
f(x)—7r ;n sin2Esinnzx

(4) The function f(x) is odd and and has
a period of 2!=2,[1=1.

= f_llf(x) sinn rxdx= 2/01f(x) sinn xxdx

= 2([lesinnnxdx—];lxzsinn:rxdx>
= 2{(D—UD}

@) =——i[xcos nxl; +Lflcosnzrxdx
nx "V un
=T(cosnn)+( L )[smnnx]o

_—1 . \n
——;17( 1)

un =_—1[xzsinn7rx]' + lflxcosnzrxdx
nr 0 nw Jo

( " + )3{( 1)"—1}
8 (n=odd)
b, )3{1 (=)= {(M)"‘ n=o
(n =even)

f(x) =W ; —nT{l— (—1)"}sinnzx

(”)3 Z

)3 sin(2n—1) nx

1.6 Application to Partial Differ-
ential Equations
Laplace equation

The Laplace equation or Potential equation
on two dimension, say x and ¥, is

0%u (x,y) %u(x,y) _
Fp; + oyt = 0 (46)

We will investigate a solution for u (x, )
under the following boundary conditions
which mean that boundary values lie on the
boundary of rectangle;

u,y) = ua,»=0 (47)
u(lx,0 = 9, ulx,b)=0 (48)

where a function 4(x) may be expanded
into Fourier Series.

First of all, we assume that a form of
solution has

u(x,y)=XxY () (49)

which is called the solution of separated
variables. Substitutions (49) into eq. (46) gives

X' _ YW
X(x) Y()

The expression on the left involves functions

depending only x while the expression on
the left involves functions depending only
y. Hence both expressions must be equal to
a constant denoted —4, where the sign of
ninus — is arbitrary. The process of the
separation is straightforward and simple, and
results in

X'(x)+1X(x)=0 (50)
Y'()—2Y(»)=0 (51)

The equation, X" (x) +£X(x)= 0 (k=constant),
can be solved at once; its general solution
may be written

X(x)= c,e’" +cre~ V% (k>0)
c1+cox (k=0)
ci1cos VEx +cysin vEx (B<0)

Il

where ¢, and ¢, are constants.
With the help of the above solutions, we
can write solutions of egs. (50) and (51):

X(x)=A xo0s VA1x + B sin /2x

Here the boundary conditions, # (0, ¥) = u (a,
y)=20, require that A =0 and Jl_=n—;r—
Thus, we rewrite
X,.(x)=B,sin 2*x (n=1,2, ) (52)
a
In like manner, the solution Y (y) is

Y(3)=Ce™7 + De ¢
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Considering the boundary condition # (x,
H=Xx)Y()=0, we have

Y.(3)=C,sinh f‘-al (y—b) (53)

Finally we have to find a solution for u (x
,¥) in the form

w(x,y) = 2 XuDYa()

n=0
= ansinn—”xsinh n—”(y—b) (54)
n=1 a a
where renewed coefficient b, can be determined
in terms of the boundary condition « (x,
0)=9x),

u(x,0)=9x) =n§lb,,sinh (—nTnb)sin n7”x

M

. mx
by sin —x
a

n=1

The above expression is the Fourier sine
expansion of the function 4(x), hence we

obtain
_2 (° . AT
b,= afo 9(x) sin P xdx

The solving procedure of partial differential
equation, which is called the method of the
separation of variabls, may schematically be
devided into three parts;

STEP I. A solution of separated variables
is assumed:

ulx,=XxY)

STEP II. Solve two ordinary differetial
equations separated of X(x) and Y (y) in
terms of the boundary condition.

STEP III. Set a general form of solution
by a linear conbination of each separated
solutions, in other words, principle of super-
position of each separated solutions and
determine expansion coefficients in terms of
another boundary condition.

[Example 1] Solve the Laplace equation
(46) subject to the following boundary condi-
tions,

M u(,»=0
u(x,0)=sinnx,u(x,1)=0

@ u(0,»=u,(1,y»=0
uy,(0,y)=cos mx,uy(x,1)=0

where %, (0 ,y)=w o’ etc..
Solution.
(1) STEP 1I.

u(x,=XxY Q)
X'+ 1X&x) =0
Y'()+ Y (y) =0

STEP 1II.
X.(x)=B,sinnzx(n=1,2,...)
Y.(y)=C,sinhnz(y—1)

STEP III.

u(x,3) = L XWY.0)

s

businnzxsinhnz(y—1)

n=1

where renewed coefficient b, can be determined
in terms of the boundary condition « (x,
0) =sin 7x,

u(x,0)=sin 7x = ), b,sinh (—n=x) sinnzx

n=1
(o]

= ) b, sinnnx
n=1

A remaining term is =1 only. Then,

o — L - —1
by=1o0r b, = sinh (—z) = sinh (x)

where sinh (—z)=—sinh (x). A desired solution
is
u(x,y) =ﬁsin nxsinhz (y—1)
(2) STEP 1.
u(x, »)=XxY ()
X')+2Xkx) =0
Y'+aY(y) =0

STEP 1II.
X.(x) = A,cosnzx (n=1,2,...)
Y.(» = Cu,cosh nr (y—1)
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STEP 1II.
u(x,y) = 2X,(0)Y,(»

n=0
= Y a,cosnnxcosh nx(y—1)
n=0
where renewed coefficient a, can be determined

in terms of the boundary condition u, (x,
0)=cos nx,

uy (x,0)=cos nx =2, a,nx cosh (—nx)cos nrx

n=1

G, CO NTX
1

D8

n

A remaining term is #=1. Then,

ai=1 or a, = L = L
! ° ! rcosh(—xn) mcosh (r)

where cosh (—x)=cosh (x).
A desired solution is

cosurmxcosh = (y —1)

_ 1
ulx,y)= 7 cosh (x)

[Example 2] Laplace equation with polar
coordinates, y and 8 (x=7cos0, y= rsin8),
is

2 2

9 u(rz,ﬁ) 41 <’9u(r,t9)_|_i2 9 u(rz,ﬁ)

or y Or y 90

= 0(55)

Solve the equation under the following
boundary conditions which mean that boundary
values lie on circle (a is radius);

u(a,0)=90), 9(—n)=9(x) (56)

where a function 9(#) may be expanded
into Fourier series.

Solution. Putting u (y,0)=R (7) ©(8)
into eq. (55), we obtain two ordinary differential
equations separated:

7ER"(1)+ 7R (1) +AR(y)=0 (57)
8"(0)+10(6)=0 (58)
The solution of ®”(6)+ 210 (8)=0 is
®(0)= A cosv210 +Bsinya 60
where a constant 2 has to be n (integer)
subject to the boundary codition;A=mn
Let R(y)=r* as a solution of the equation,

7?R"(y)+ 7R’ (y)+ 2R(y)=0. The exponent
¢ is determined by

uwu—1)u—n?=0 or u==+n

However, the solution of y~" is excluded
due to irregularity at y= 0 . Hence we write
a solution

u(r,00=2 r"(A,cosnd+B,sinnb)

n=0

where renewed coefficients A, and B, are
constants to be determined in terms in terms
of the periodic boundary condition:

oo

ula,0)=2,a"(A,cos n0 + B,sinn0)
=0

=9(0)

The expression of Fourier expansion of 4(8)
has

9(0) =% +'§1 (@ancosnf+b,sinnb) (59)
where

a, = %f_’l"y(t) cos nidt

bu =+ [ 90 sinnat

In comparision between egs. (59) and (59),
the coefficients A, and B, are

A0=%1 B():O, anAn:aan:bn
or
__1 rr
An=—r /_”g(t) cos ntdt
1 g .
By =—— [_ky(t) sin ntdt

Then we have
u(r,0) =i["y(t)dt+ii (LY
7 27 )=z = \a
X/_” 9(t) (cosntcosnf +sinntsinnb ) dt
_1r- 15 (ry
T2 f—xg(t)dt-l_ n’ngl(a)
></_’r 9(t) cosn(t —80) dt

- ZL” [_:.‘I(t)l:l +2 21 (%)ncosn (t ~0ﬂdt



Guide to Applied Mathematics for Foreign Students I 169

where the bracket[:--]on the right-hand
side the last equality reduces to

[] =1 +Z (%)”(ein(l—ﬂ)_i_e—in(t—ﬂ))
n=1

it—60)

o r n e e—i(l—d)
=1 +n§1(7) 1—¢ @0 + 1— e—i(:—o):l

2arcos(t—6)+27r?
a’—2aycos(t—8)+7?

=1+

aZ_TZ
T a®*—2aycos(t—0)+r?

Hence we rewrite
. 1 T 02_72
u(T,ﬁ)_zn.[_”g(t)az—Za ycos (1 —6)+7?

dt (60)

Wave equation
The standard form of Wave equation in the

two variables, say x and ¢, is

, u(x,t) _ d%ulx,t)
¢ 0x? - ot?

where ¢ is constant. We will investigate a

(61)

solution for # (x, t) under the following
boundary and initial conditions;

u(,t) =ua,t) =0 (62)
u(x,0) =9, u, (x,0 = Gx) (63)

where functions 9(x) and G(x) may be
expanded into Fourier series. The equation
(61) can be solved by the separation of variables
in the previous section. First. let

ulx,)=X&x)T®) (64)

Substitution (64) into eq. (61) gives
X'(x) _ 1T _

X cF 1@ A
Then, it follows that
X'x)+1Xx)=0 (65)
T (2 A)TH=0 (66)

We can write solutions of egs. (65) and (66) :
X.(x)= B,,sin—na—”x (n=1,2,-)

T,({t) = Cucos nth + D,sin Eait

Finally we look for a solution for # (x, y)
in the form

u (x,t)= iX,, ()T, (8
n=0

= Y sin Eaix (ancos Zla—nct + b,sin 1gct) (67)

n=1
where renewed coefficients a, and b, can be
determined in terms of the initial conditions,
u(x,0=9() and u, (x,0)=G(x),respectively,

u(x,0)=9(x)=iansin ﬁaix (68)
n=1

and then
2 (" g gin E
a,= [Og(t) sin — tdt

a

On the other hand,
u, (x,0)=G(x)= Zb,,’%tsinn—}x (69)
n=1

and then
nrc

2 "o i IE
Tb”_a](;c(t) sin — tdt

To demonstrate the propagation of wave,
we can rewrite the expression (67), obtaining
in terms of the factor formulas in trigonometric
fuction,

. hm nr
a,sin—xcos —ct
a a

= az" {sinnf(x—i-ct) + sin nju(x_d)} (70)
and
b,sin n%xsin’%rd

_ b nx nm.
== {cos p (x+ct) + cos 2 (x ct)} (71)

From these, we may write as a general form
of solution

ulx,)=af 1 (x+ct)+bf,(x—ct) (72)
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which is called d’Alebert’s solution of the
equation (61).

The wave equation (61) can be changed to

o’uln,t) _

the equations 9708 0 by the linear

transformation of » =x+ ¢t and t =x — ct.

The repeated integral with respect to » and
9°u (n,1)
t for anae

[Example I] Solve the wave equation subject

=0 gives the solution (72).

to the following boundary and initial conditions,
1 u@,H)=u(l,t)=0
u(x,0)=sinzx,u,;(x,0)=0
2 u:(0,HD=u,(1,H)=0
u(x,0=0, u,(x,0)=cos nx

Solution.
(1) STEP 1.

ux,)=X@TQ)
X'(x) _ 1 _T'®

X ¢z TQ@

=—2

STEP 1II.
X'(x)+2Xx)=0
T )+ 2 )T@H)=0

X, (x)=B,sinnzx (n=1,2,")
T.(t)=C,cosnxnct + D,sinnzct

STEP III.

(e, )= 3 Xa@T )

n=0

[}
= Y sinurx(a,cosnnct + b,sinnzct)

n=0

(o)
u(x,0)=sin 7x= Y, a,sinnnx

n=1

n=1 = a=1

On the other hand,
u (x,00=0 = b,=0

Hence,

u(x,t)=sin nxcos nct

(2) STEP II.
X'+ 2Xx =0
T'O+(2)TE =0

X.(x) = A cosnrx (n=1,2,-)
T,t) = C ,cosnnct+ D,sinnzct

STEP III.
w(x, D) = 2 X0 Told)
n=0

=Y cosnnx (a,cosnnct + b,sinnrct)
n=0
u(x,0=0 = a,=0

On the other hand,

u,(x,0)=cos rx= 2, b, (nrnc) cosnrx)

n=1
1
= n=1, b1=—_
nc
Hence,

1
ulx, )= —o COs mXCOos nct

Heat equation

The standard form of (one dimensional) Heat
equation in the two variables, say x and ¢,
is

o2 0%u(x,t) _ Ou(x,t)

dx? - ot (73)

where ¢ is a constant. We will investigate a
solution for # (x, ) under the following
boundary and initial conditions;

u(0,t) =ula,t) =0 (74)
u(x,0 = 9(x) (75)

where a function 9(x) may be expanded
into Fourier series.
First, let

ulx,)=X@)T®) (76)

Substitution (76) into eq. (73) gives

X'x) _ 1. T® _
X(x) 2 T®

A
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Then, it follows that

X'(x) +2X(x)=0 (77)
@ +(22)TEH=0 (78)
We can write solutions of egs. (77) and (78):

Xn(x) = BnSinnTn.x (n=1,2,)

”_7"-')2[

T.(t) = Cpe "3

Finally we look for a solution for # (x, y) in
the form

u(x,t) —ZX @) T(®)

8

=Y b,e (") gin 2E (79)

n=1 a
where renewed coefficients b, can be deter-
mined in terms of the initial condition, « (x,

0)=9),
u(x,0)=.9(x)=ib,,sinn7ﬂx (80)
n=1

and then
_2/° .
= a/o 9(t) sin - tdt

[Example I ] Solve the Heat equation
subject to the following boundary and initial
conditions,

1 u,H)=u2,H)=0

# (x,0)=sin nx
2 u@,H)=ul,)=0
x(1+x) (—1<x<0)
u(x,0) {
x(1—x) (0<x<1)
Solution

(1) STEP 1.
u(x,)=Xx)TQ)

X'x)+1Xx) =0
T'®)—aT@) =0

STEP 1II.

X(x) = Acos+v/ix + BsinJ/ix

X(0)=A =0, X(©2) =Bsin2y2 =0

VT ="Cor 22("7”)2 (n=1,2,")

2

T(t) = Ce=* = Ce~("5)"

STEP III.
u(x, t)—ZX () Tult)

> ~(%)
;b sin = 2 X e
#(x,0) =sin nx =2b,,sinn7"x
n=1

b2=1

u(x,y) =sin rxe *'

(2) STEP II.
X(x) = Acosvix + Bsin/ax
X0)=A=0, X(1)=Bsin/2 =0
V2 =nwr or A=nr)? (n=12,)

T(t) =Ce *=Ce """

STEP III.
u(x,2) =2 X.0)T, (@)
n=0

00
=Y b,sin(nrx) e "1

n=1
u(x,0) :{x(l-l-x) =ibnsinnnx
x(l—x) n=1
where
8

4 —— (n = odd)
by=——{1—(—1)7"={ (7)

(nn)3{ (=17 {0 (n = even)

by Exercise (4) in the previous section. The
solution is written

ulx,t)= 32 3{1 (—1)"} sin (nwx) e ~#®*!






