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Mode conversion of acoustic phonons

by a superlattice with isotropic layers
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A fundamental idea of mode converter of acoustic phonons is proposed. The idea is based on the
resonant condition of transmission of acoustic phonons in a superlattice. At this condition, the wave
energy oscillates back and forth between the two acoustic modes while the phonons get through the
superlattice. This effect is analyzed in terms of the transfer matrix method and finite difference
equations. Mechanism of the mode conversion is analogous to the MSW effect in the field of neutrino
physics, and the structure of the mode converter have the feature of a CHIRP (coherent hetero-

interfaces for reflection and penetration) superlattice.

I. INTRODUCTION

Recently, we have reported an unusual be-
havior of the transmission and reflection char-
acteristic of phonons in a superlattice (SL) at
an oblique angle of propagation.! Specifically, for
frequencies in the vicinity of anti—crossing fre-
quency in the SL dispersion relation, the wave
energy oscillates back and forth between the
different polarizations as the wave propagates
through the SL. These oscillations are analogous
to the Pendellosung effect for electrons and to
the Borrmann effect (the anomalous transmis-
sion effect) for X-raysz2-3
When X-rays, for instance, are incident to a
very perfect crystal with a certain angle, there
are strong reflected beam and simultaneously a
strong transmitted beam of about equal intensi-
ties in spite of an absorption characteristic of
the crystal3 In the case of phonons in SLs, the
reflected and transmitted beams correspond to
the different acoustic phonon modes, ie. trans-
verse (T) and longitudinal (L) and the acous-
tic energy of the mode converted from the inci-
dent polarization steadily grows. This effect is
also analogous to the oscillations in neutrino
physics, which are predicted to occur between
different neutrino flavors if neutrinos have
mass.

When neutrinos with definite energy prop-
agate through matter with varying electron de-
nsity rather than through free space, an in-
teresting additional effect referred to as the
Mikheyev-Smirnov- Wolfenstein (MSW) effect
4.5 occurs. More explicitly, the resonant ampli-
fication of oscillations or an almost complete
conversion of one neutrino flavor into the other
should take place. A similar effect is expected
to occur for the case of phonons which prop-
agate through a SL with varying thickness of
bilayers. In the present work we study this
effect for phonons in SLs.

Figure 1(a) shows a SL consisting of three
sub-superlattices (i.e. SL1, SL2, SL3) alternated
thin elastic single-layers of two different mate-
rials. In each sub-SL, the single-layer thicknes-
ses, D4 and Dp, are assumed to be common to
both A and B. The structure of a bi-layar (BL)
is depicted in Fig.1(b). However the D4 and Dg
are slightly incremented (or decremented), ie.
SL1 has thickness of BLs thinner than that of
SL2, and SL3 has BLs thicker than SL2. This
type of SL is analogous to CHIRP (coherent
hetero-interfaces for reflection and penetration)
superlattices which has many attractive fea-
tures for device application.t
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Fig.1. Schematic geometry of the superlattice structure is depicted. Each layer is assumed to be made from

amorphous GaAs or AlAs, as well as substrate and a 600nm buffering region. (a) The thickness of each consti-

tuent single-layar in a bi-layar (BL) of sub-SLs is incremented by step wise. At the center of the SL (SL2),

the BL satisfies the resonant condition of transmission. The substrate and detector are assumed to have the

elastic properties of B and A layers, respectively. (b) The structure of BLs in each sub-SL is the same and

each single-layer has thickness either D, or Dg. Total thickness of a BL then becomes Ds + Dg = Dyg.

In Sec.II, the transfer-matrix method is intro-
duced and we get an approximated 2 X 2 trans-
fer matrix which relates the phonon amplitudes
of adjacent BLs. In Sec.Il, finite difference equa-
tions which relates the phonon amplitudes in
the adjacent BLs are derived and they are
solved. From this results, we propose a fun-
damental idea for the mode converter or selec-
tor in Sec.IV.Numerical examples for the conver-
sion rates are given in Sec.V, and we show the
mode converter also plays a role of mode selec-
tor of the acoustic phonons. Section VI summa-
rizes the present work.

II. TRANSFER MATRIX

We consider the coupled transverse and lon-
gitudinal vibrations and write the displacement
vector in a single-layer as follows:

u= > {afl e exp(iky 2"
J=T,L

+ b €Y exp (—ik z)}e*xint

(j=A,B), (1)

where 7 indicates an index of BL in the SL, j
discriminates the constituent materials A and
Bin Figl(b); a) and b)) are the amplitudes
of the transmitted and reflected phonons of
mode J/, respectively; e {> and & § are the unit

polarization vectors; k; and k}” are the wave

numbers parallel and perpendicular to the inter-
faces, respectively.

The transfer-matrix method is a useful way
to obtain the transmission and reflection rates
of phonons in SLs. For SLs consisting of crystal-
line layers with elastic anisotropy, the relevant
transfer matrix is a 6 X 6 matrix, in general. In
the present case, however, the transfer matrix
is a 4 X 4 matrix because we consider isotropic
(7

elastic media. The phonon amplitudes a5

and b, in a BL is related to the ones in the
previous BL a) and 5%} by multiplication

with a transfer matrix.” Thus

ash, at)
ai{r)x-lrl _F(J') al(-{r)t (9)
bian tloi |’ )
b b

where the transfer matrix FY is given by

FD=@ W fH) @ fib (3)

(j=A and k=B, or j=B and k=A),

exp(iky) D7) 0 0 0
o= 0 exp(ikg) D(n’)) 0 0
" 0 0 exp(—ik%-”D(n”) 0

0 0 0 exp(—ikl?) DU

(4)

fm = [M(’”]ﬂ M, (5)
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In these expressions D, is the thickness of the
layer j in the nth BL. The matrix ®{” repre-
sents the associated phase change for phonons,
¢, is the angle of incidence or reflection of the
phonon mode J; c44 is the stiffness coefficient.
On the rhs. of Eq.(6), we have omitted the su-
perscript j from ¢ r, ¢, and c44, for simplicity.
In each sub-SL of Fig.l(a), D{’'s do not de-
pend on the index # of BL, and they are ex-
pressed as D4 and Dg as in Fig.l(b). Further,
FY and ®{” do not depend on » if we consid-
er periodic SLs. From Eq.(5), we note that the
matrix f% satisfies

f(kn:[fuw ]“ ) (7)

This matrix consists of the amplitudes transmis-
sion and reflection coefficients at a single inter-
face for a phonon incident to j layer from £k
layer.
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Fig.2. Phonon dispersion relations in a periodic
GaAs/AlAs superlattice in the isotropic, continuum
approximation. The thicknesses of A layer (AlAs)
Da and B layer (GaAs) Dg are the same as 4.0nm;

the periodicity is Dag = Da + Dg = 8.0nm. There-
fore, this is a dispersion relation for SL2. The lowest
anticrossing frequency is denoted by voq=812GHz.
The other sub-SLs, SL1 and SL3, have similar dis-
persion relations. Equivalent frequency for SL1 in
this figure is v =731GHz, that of SL3 is v, =
893GHz. The propagation direction is such that the
direction of the L (T) mode is 45°(25.2°) in the GaAs
layers and 57.5°(30.5°) in the AlAs layers, respec-
tively.

Making use of the 4 X 4 matrices discussed
above, we can get a dispersion relation as in
Fig.2. It is depicted for the SL2 that has BLs to
satisfy the resonant condition of transmission
with frequency vo = 812GHz.! Incident angle is
¢ 1P =45° (¢ =252°). The branches near the
frequency v have the anti-crossing feature.
(See Sec.IV for the meaning of frequencies 1,
and vz .)

The formulation based on the 4 X 4 transfer
matrix given above is still intractable for the
analytical calculations. Accordingly, we develop
an approximated formula for the transmission of
phonons which utilizes the matrices of 2 X 2,
The amplitudes we keep here are only those of
transmitted phonons, ie., ¢7 and a;. Thus, equa-
tions (3) and (4) become for j=B and k= A
(hereafter we omit the superscript for the 2 x 2
transfer matrix F),

F,=0® fan g pan) (8)
sofoty o o]
" 0 exp (b’ D))’ (9)
where
« L] [
= [ [P J 1o

In this approximation, we should note that the 2
X 2 matrix f consists of the elements of the
4 X 4 matrix fY®, but is not defined by Eq.(10)
with matrices M simply reduced to 2 X 2. This
means we neglect the amplitude reflection
coefficients, but not the reflected amplitude
b2 . This approximation is valid in frequencies
near the resonant condition of transmission be-
cause reflection from interfaces of the SL is
strongly suppressed. (See Fig5 (a)) A crucial
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point is that we require the same relation as
Eq.(7) holds for the reduced matrix £, ie.

fer=(fw)™, (11)

or this equation defines f**’
With these matrices, Eq.(2) is reduced to

aTn

a | (12)

QL+

ar,wn} —F
- n

where the amplitudes @7, and a;,, are those in
the B layer (we also omit the superscripts of
ar, and ay . hereafter).

. FINITE DIFFERENCE EQUATIONS

In order to find equations satisfied by the
transmitted amplitudes of T and L phonons we
need an additional equation which relates the
amplitudes a;,, + 2 with @, +1, Le,

:Fn+l

aT.n+2 (13)

A Ln+2 Qrn+1

aT,n+l]
b

where Foy is also the transfer matrix for (n +
1) th BL defined like F, . Using Egs. (12) and
(13), we obtain two difference equations satis-
fied by the amplitudes of both modes:

aT,n+2_(F'll+F22%) ATn+1

12

+(F11F22F_12_FVIZFZI) ar.=0, (14a)

12

~ FZI -
Arn+2— (Fu—= —F'») ALn+1
21

+(F11F22F_2_F12F21)0L.n:0y (14b)

21

where F;, is a component of the matrix F,
and F'j is of Fuy.

In each sub-SL, F, = F Therefore, Eq.
(14) is reduced to

a,,+2—2ra,,+1+ 5an=0, (15)

where a, expresses either a; ,, or a7.,,; and

d=det[F]

= exp(ik R D4 +ik'B Dp+ik ) D . +ik'E D),
(16)

c =%tr[ﬁ‘]. (17a)

The trace is explicitly expressed as follows:

tr (F ] =[5 (exp (k) D, +ikB Dp)
+exp(ik' D +ik'P Dy}
—f BV FED L exp (kA D, +ik® Dp)
+exp (kYD +ikE D)} ]

[(fBA fBA _ fBA p(BAYy (17b)

We emphasize here that f(jk) does not de-
pend on n. The frequency of phonons are set to
satisfies the resonant condition of transmission
at SL2, ie.

KR D4 +EF) Dy
=k Do+ kD Dpt2ne =1, (18)
where ¢ is an integer. With this condition, Eqs.
(16) and (17) have a following relation:
T =—%—tr[ﬁ‘]=e"‘e0, (19a)

BA BA BA
_ fEOFES g B f B o5,

60— BA BA ’ (lgb)
i =0

where ¢ = k(ﬁ)DA—k(,fz)DA or ¢ = k(fz)
Dp—k®) Dy because of Eq.(18). We note here
that ¢, is real and positive$ The facter e’ is
either + 62 or — 62 . The sign is determined
by the value of X in Eq.(18).

Analytic solution of Eq.(15) is

ian
e

n= sinh @

{—aqsinh(n —1)60+a,e "*sinhn 6},
(20)

where
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coshfd=rc/0V2=¢, (21)
2a= KR +ED) D4+ (KB +£P) Dy, (22)

and; ao and @; are initial values of @, at # =0
and 1, respectively. At the resonant condition,
e==+ ¢¢ and ¢o<1. Therefore:

Rel#]=0 , (23a)

Im[0] = cos™! |e|=cos™! |z]. (23b)

A period of oscillation of the transmission rate,
b, is determined by Eq.(23b) as follows:

T _ T
cos™! e cos'|z| °

p= (24)

We find that Eq. (20) is able to reproduce
characteristic features of the transmission rates
similar to those calculated with the 4 X 4 trans-
fer matrix. The validity of the present approx-
imation can be seen in Fig.3, which compares
the phonon transmission rates calculated exact-
ly with the 4 x 4 transfer matrix (open circles)
and the ones calculated with the 2 X 2 transfer
matrix (solid lines).

V. STRUCTURE OF
THE MODE CONVERTER

The basic idea of a mode converter or selec-
tor is constructed in this section based on the
above discussion.

In the Fig.3(a), transmission/conversion rate
from L mode to T mode is displayed for SL1
(D4 = Dp = 3.6nm, frequency Vo, and incident
angle ¢ ® =45°). In this case the resonant con-
dition is not satisfied. However we can see an
oscillation with a small amplitude. Period of the
oscillation is p; =7.4 BLs.

The resonant condition of transmission is
satisfied in SL2 with the same condition as in
Fig.3 (a) except the thickness, ie, D4y = Dg =
40nm. The transmission/conversion rate oscil-
lates with a period p2=11 BLs and an amplitude
is almost unity. That implies the energy of the
L and T modes exchanges totally between them,
and interaction with those modes is strong.
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Fig.3. Transmission rate versus index of BL in a
periodic GaAs/AlAs superlattice. Open circles are
data calculated from the precise 4 X 4 matrices.
Solid lines are given by the solution of the finite dif-
ference equations. (a) For the SL1, Incident L-
mode phonons converted to T mode. However, the
transmitted energy oscillates with distance of prop-
agation with rather small amplitude. (b) In SL2, the
same oscillation appears with a maximum ampli-
tude,i.e. almost unity. (c¢) If the T-mode phonons
are incident to SL3, the oscillation of T mode ener-
gy keeps a transmission rate at the top of the graph
or near unity.

If we write down Eq. (20) for ap =0, we can
see that the strength of interaction between
those modes have relation to the amplitude of
oscillation. Energy is proportional to |a.[* , ie.

sinhn@ |? (25)

2 — 2
|anl lall Sinh 0 ]

where a,<F, for pure L mode incidence .

The SL3 has thickness D4 = Dg=4.4nm. With
the same condition in Fig.3 (a) or (b) except
the thickness of BLs, SL3 can keep the energy
almost in T mode as in Fig.3 (c). However, the
transmission rate also oscillates like (a) and (b)
with a period p3=7.2 BLs.

If we consider L mode incidence only from
the substrate, the structure of a mode converter
is designed as follows: Incident L mode phonons
must be input to the SL2 without mode conver-
sion. Therefore, the number of the BLs in SL1 is
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Fig.4. Transmission rate of transverse (T) phonons
versus index of BL for longitudinal (L) phonon inci-
dence (the angle of incidence in the substrate is
45° and the frequency is Vo= 812GHz). (a) The
transmission rate of T phonons or conversion rate
from incident L phonons to T phonons is realized by
the SL in Fig.1. (Inset is conversion from mode T to
L.) (b) The conversion of phonon modes also takes
place in the CHIRP superlattices more efficiently
than the SL in Fig.1. However the thickness of each
BL may bear a problem. (See text.)

took as mp, (m: an integer). We took m as 3
(i.e. # BLs = 22). If the incident phonons are
mixed with both L and T modes, we can con-
vert them by changing the number of BLs in
SL1. The phonons can be put directly to SL2,
but SL1 can change the incident phonons to
pure L mode faster than SL2. In SL2, the mode
conversion is completed with number of (m +
1/2) p» BLs. We put m as 2 (ie. # BLs =27).
The SL3 keeps the mode in T. Therefore, num-
ber of BLs is not essential in this mode conver-
ter. However, to take the pure T mode we put
the number of BLs as mps. We took as m =4
(i.e. #BLs=29). Therefore the whole structure
of the SL have become as in Fig.l. We can see
that the incident L-mode phonons are con-
verted totally to T mode with the SL designed
in the above discussion as in Fig.4(a).

If the thickness of layers in a SL is made
thicker. the frequency of the dispersion relation
is decreased. This is because the frequency is
inversely proportional to the layer thickness. In
Fig.2 and Fig5(a), Vv, expresses an equivalent
frequency in SL2 assuming that the phonons in

SL1 is moved into SL2. The frequency V% is an
equivalent frequency of phonons in SL2 if the
phonons in SL3 are in SL2. The period of oscilla-
tion in Fig4 (a) is long in SL2 where the re-
sonant condition is satisfied. In SL1 and SL3, it
is short. If the frequency of the incident pho-
nons slightly shifts to high region, the period of
oscillation in SL1 becomes longer because the
shifted frequency approaches the resonant fre-
quency of SL1. If the incident frequency slightly
shifts to low region, the oscillation period of SL3
becomes longer. In both cases, SL2 and the
sub-SL at the opposit side have short periods.
From this effect, we can expect that the SL
with the three sub-SL’s in Fig.l can convert
mode more efficiently than a SL only with SL2.

If the step of thickness, 0.8nm, of the single-
layers (from 3.6nm in SL1 to 44nm in SL3)
could be spread to each single layers (i.e. the
thickness changes gradually by 0.8/78 = 0.010
nm), such a SL would act as ideal mode conver-
ter as in Fig4 (b). That SL is called as a CHIRP
superlattice. However it cannot be realized be-
cause the increased thickness is too small or
less than an atomic size. If the layers could be
fabricated much thicker, the mode converter
could be more efficient. In this case, the fre-
quency of the resonant condition becomes very
low.

V. NUMERICAL RESULTS
OF MODE CONVERSION

In fabricating the mode converter with the
SL in Fig.l, we have to consider the incident
phonons as a wave packet for real applications.
Because the mode converter acts like a passive
filter in electronics, we are allowed not to be
nervous about the response speed. Therefore
we consider continuous wave (CW) packets
that are incident to the SL continuously in any
time. Frequency distribution of the amplitude in
the wave packet is assumed in the substrate as
follows:
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Fig.5. (a) Conversion rate from mode L to T and
transmission rate of mode L in SL2 at 15th BL.
Labels SB1 and SB2 correspond to the stop bands
in the dispersion relation in Fig.2. Frequency dis-
tribution of incident wave packets to the SL is com-
pared with the conversion rate: frequency widths
are (b) 0 =4GHz and (¢) 0 =60GHz.
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After the wave packet gets through the BLs,
the amplitude is calculated by

aji (x)= fa Pw) r et dy. (27)
where # is the index of BL; 7 is a
transmission/conversion rate from mode L to
mode J (= L and T) from the substrate to the
single-layer j in the BL #, and it is given by
making use of the 4 X 4 matrices in Eq.(3). We
note that 7= and k, depend on the fre-
quency V. The intensity of the wave packet at
BL # is directly proportional to |a ) (x) .

The conversion/transmission rates from L
mode to T/L are depicted in Fig5 (a) for the
SL2 with 15 BLs. Here we consider two CW
packets. One is with a narrow frequency width
0 =4GHz as in Fig.5(b), and the other is with a
broad frequency width ¢ = 60GHz as in Fig5
(c). The width of the packet in the real space
along the z direction is inversely proportional to
the frequency width ¢ . Along the z direction
the packet have the same intensity. We show
how the packets propagate through the SL in
Fig6. From the top to the bottom, there are de-
picted the incident packet, packets out of SL1
getting into SL2, packets out of SL2 getting into

' L Incident packet
(mode L)

-1 0 1 2 3
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A L Output of SL 1
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Fig.6. Propagation of the wave packet is depicted at the input (incidence) of SL1, the output of SL1, the output
of SL2, the output of SL3, and detector after 600nm depart from the output of SL3. The widths of wave packet in
the real space are inversely proportional to the frequency widths: (a) With ¢ =4GHz the SL acts as a mode
converter. (b) With © =60GHz, the SL plays a role of a mode selector.
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SL3, packets out of SL3 getting into the detec-
tor layer with a 600nm buffering region, and
packets in the detector.

Figure 6 (a) is for ¢ = 4GHz. The incident
CW packet with pure L mode is totally con-
verted to T mode with a broad width in the
real space. The SL acts as a mode converter
with precise accuracy.

Figure 6 (b) is for 0 = 60GHz. Because the
frequency distribution of the packet is broad as
in Fig5 (b), the incident CW packet of pure L
mode cannot be converted T mode. Therefore,
the wave packets appeared in the detector have
two peaks with different modes L and T.
However they are separated enough from each
other because the width in real space is narrow.
Further the packet of mode T in the detector
have a peak with a frequency width, ¢ . about
20GHz. This is a width of frequencies in Fig.5
(a) where the mode conversion have the high-
est efficiency around the resonant frequency %.
Thus the SL acts as both a mode selector and a
frequency filter in this situation.

If we assume that a plane wave of mode L
are propagating through the SL without mode
conversions, the location where the wave should
appear in the detector can be predicted as z; =
1753nm by the method of geometrical optics. If
we treat a L mode plane wave, the location
should be 2= 687nm with the same method. In
the case of the CW packets with the mode con-
version, they appear in a range from z7 to z;.
We can see this feature in Fig.6.

VI. SUMMARY

In this article we have shown that the trans-
fer matrix method is also useful to analyze the
resonant condition of transmission. The 2 X 2
matrices is introduced near the frequencies of
the resonant condition and they are reduced to
the finite deference equations, and they are
solved analytically.

Based on the above discussions, a structure of
the mode converter is proposed. The structure
is similar to the CHIRP superlattice in device
applications, and the mechanism of the mode

conversion is analogous to the MSW effect in
the field of neutrino physics, but not homoge-
neous. The mode conversion in Fig4 (a) is of
the nonadiabatic process while the process in
Fig4(b) is adiabatic.

The CHIRP superlattice has an efficiency to
convert the phonon mode. However, the fre-
quency of the incident phonons should be ex-
tremely low. To construct the mode converter
for high frequency phonons we have to make
use of the oscillations of transmission /conver-
sion rates near the frequency of the resonant
condition of transmission. Further, we show this
SL works also as a mode selector.
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