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Abstract

There are two kinds of higher-order objects. One is predicate name, and the other is a whole atom.
Many programming language which deal with declarative aspects of programs and procedual aspects
independently allows those higher-order objects. They are allowed for only practical purposes.and
often beyond the foundamental theories of the language. We have developed a declarative language,
named Lyg. based on a theory of equivalent transformations. The language originally has an ability
for dealing with one kind of higher-order objects. They are called atomic objects. This paper aims to
extend the ability to deal with other kind of higher-order objects. They are called class objects.

1 Introduction

We are interested in two aspects of program-
ming languages, declarative semantics and pro-
cedural semantics. Our computational frame-
work based on equivalent transformations (ET)
can deal with these two flexibly and efficiently.
Two programs are said to be equivalent when
their declarative semantics are equal. A prog-
ram transformation algorithm is an equivalent
transformation when a given program and a
program obtained by applying the algorithm
are equivalent. In the ET {ramework, any
method for executing programs is allowed, as
long as it is an equivalent transformation. Com-
paring the ET framework to other computation-
al frameworks, (eg. the framework of logic
programming (LP)) , the declarative semantics
of programs are independent of procedural

' The word “object” in this paper is different from
the one in object-oriented languages.
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semantics of them, but the method for execut-
ing programs is restricted to logical inference. It
has been shown that programs can be executed
more flexibly and efficiently in the ET frame-
work than in the LP framework [3].

In the ET framework, the method for ex-
pressing objects' is also flexible. In contrast
with the LP framework in which objects are ex-
pressed only by terms, the ET framework
allows many representations of objects. A
method how to obtain the declarative semantics
from representations of objects (or programs)
is generally defined [10]. The method is inde-
pendent of the representation. In solving a
given problem within the ET framework, there
are two alternative ways to express objects: (1)
using expressions that are specialized for each
given problem, or (2) using general express-
ions that can express many different objects in
a single and general form.

In order to establish a general method for ex-
pressing many different kinds of objects, we
have developed a declarative langauge, named
Lyg [111. In Lyg. all objects are expressed by
“atomic objects.” Each atomic object has a class
and a substructure. The class determines the
relationship between one object and another,
and the substructure expresses the structure of
the object. For example, an object that repre-
sents a formula has a class, (eg.. number, term,
etc.) and a substructure, (eg., 5 (+18 2), etc).
This paper provides a theoretical foundation for



58 AT RS FEMERLEEB S

higher-order objects in Lyg. making Lyg more
expressive. This paper focuses on the express-
ion of higher-order objects and shows some
problems and a solution. In the next section
(Section 2) , there is a general discussion on
some examples. In Section 3, the definition of
the target langauge of this paper, LHS' is given.
Section 4 shows those higher-order expressions
in the language. Section 5 provides an exten-
sion to the language. In Section 6, our method is
compared with other methods.

2  Two Higher-Order Expressions

The predicate and, which makes a logical con-
junction of two atoms, may be dafined in
Prolog-like style as :

and(P, Q) :- P, 0Q.

The theoretical foundation of Prolog is the
first-order predicate logic [15] . It does not
allow variables to appear at places where atoms
are located. Variables referring to atoms, such
as P and Q on the right-hand side, are not
allowed in the first-order predicate logic, since
atoms should be placed there. Therefore, they
are beyond pure Prolog. Prolog uses such ex-
pressions for practical purposes.

Variables are higher-order when they appear
at places where variables are not allowed to
appear by the first-order predicate logic. Clau-
ses, atoms, and predicates are higher-order
when they have higher-order variables.

Many logic programming languages for such
higher-order expressions have been developed
with their theoretical foundations, ie., higher—
order logic. For example, the language LIFE
[1] expresses all objects with Y-terms. Since
the variables in LIFE can refer to any Y -terms,
including atoms, the and clause® above is in
LIFE’s theoretical foundations.

As another example of a higher-order ex-
pression, let us consider map clauses. They are

%In this paper.an atom that has a predicate xxx is
called a “xxx atom.”A clause whose head is a yyy

atom is called a “yyy clause.”

expressed in Prolog-like style as

map (P, [], []) :-
map (P, [E1|R1l], [E2|R2]) :-
P(El, E2), map(P, R1l, R2).

The variable P in the atom P(El, E2) on
the right-hand side of the second clause refers
to a predicate name. Such occurrences of vari-
ables are also not allowed in first-order predi-
cate logic. Therefore, map clauses above are
higher-order. Since LIFE does not have higher-
order variables for expressing only predicate
names, the map clauses are beyond the theore-
tical foundations of LIFE.

M. Hanus tried to explain the above higher-
order expressions only with first-order express-
ions [8] . He used an additional predicate,

apply? . and constants, Anot, Ainc, -, cor-
responding to the predicate not, inc , -, as
follows:

map (P, [], [1) :-

map (P, [El|R1], [E2|R2]) :-
apply2(P,E1,E2), map(P,R1,R2).

apply2 (Anot, X, Y) :-not(X, Y).

apply2 (Ainc, X, Y) :-inc(X, Y).

apply2 (A---

The expressions here are all first-order. No
variable appears at a place where first-order
predicate logic does not allow it to appear.
Are the map clauses, which are originally
higher-order, expressed as first-order expre-
ssions ?

However, as M. Hanus pointed out, a new
problem arises. There is no mechanism for mak-
ing any relationship between the constant
Anot and the predicate not, Thus. a clause
that is semantically incorrect; e.g.,

apply2 (Ainc, X, Y) :- not(X, Y).

is syntactically correct in his method. The ori-
ginal program, which uses higher-order
clauses, did not involve such a clause. This
shows that map clauses can not be expressed
by only first-order expressions.

In conclusion, we found that (1) there are two
kinds of higher-order expressions, such as and
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and map, and that (2) higher-order expressions
can not be expressed exactly by only first-
order expressions.

3 The Target Language

This section defines the target language, LHS
[11], used in this paper. A directed acyclic
graph, (C ,—), and a set, V, are given.
CNV =¢ must hold. C and — express a set
of nodes and a set of edges, respectively. Each
element of C is called a constant and each ele-
ment of V is called a wariable. For two con-
stants @b € C, if an edge {(ab) exists, then the
edge is expressed as a—b.

3. 1 Atomic Objects

An edge a—b can be regarded as a parent-child
relationship. The constant ¢ is the parent of b,
and b is the child of . The parent-child re-
lationship makes a partial order on C, defined
below.

DeriviTioN 1 (Descendant Relations on C): For
a,beCC, bis a descendant of a and is expressed
as a—b iff one of the following conditions holds:

* a=bor

« W eCst.and dSb.

If a— b holdsthen there must exist a finite sequ-
ence a=x;— -+ —x,=b,wherexy,--+,x, €C
(n>1). O
DeriNiTion 2 (Class): A class is a sequence of zero
or more constants. C*stands for a set of all classes.
The length of a class is the number of constants
included in the class. O
Classes are also ordered by descendant rela-
tions.
DerinitioN 3 (Descendant Relations on C*):
Fors=(s1,"**,Sm)> ¢ = (t1,"+*,2,) € C* (myn>0),
tis a descendant of s, expressed as s> ¢, iff the fol-
lowing condition holds:

n>m, ands,-im,fori:l,---,m. (-

The class whose length is zero, ie., (), always
holds that () > ¢ for any class c€ C* Classes in
LHS are similar to the so-called types in other lan-

guages. In Ly, the word “class” is used.
Derinition 4 (Atomic Object) : An atomic object
(or simply an object) is a triple (X,c.s). 4 stands
for the set of all atomic objects, Each part of
(X.c.s) is defined recursively by:

« XeV,
. ceC,
© s=(S1,08m), €A, i=1,-,n (n>0).

The class ¢ is called the class of the object. The
sequence s is called a substructure of that object,
and each element of the substructure is called a
subobject. O

In this paper, upper case letters, such as X,Y, -,
are used for variables of atomic objects.

Variables of atomic objects are used as refer-
ences of them. In one atomic object, a variable
should always refer to the same atomic object.
Different atomic objects should not be referred by
the same variable. This rule is called the regularity
of atomic objects. A regular atomic object (or sim-
ply a regular object)is an object that satisfies this
rule. In this paper, all atomic objects are regular
objects. According to this rule, we introduce the
following notation and abbreviations:

* Using a programming-language-like style,
an atomic object{X, (c1.***.Cm) ., (s1.°"*.8,) )is
written as X :[ (1 o) S1°°80].

* In an object, if there is no need to indicate
that some objects are the same, then the
variables of such objects are omitted.

e The second time (and later times) a subob-
ject appears in an object, it is simply noted
by its variable.

Some examples of atomic objects, assuming that
C = {5,num,nil,cons,append} and V = {X}
are given, are:

« [(5)]

e [(list num)]

e [(cons num) [(5)] [(nil num)]]
« [(append) [(nil)] X:[()] X]

As shown in these example, classes express not
only types (ie, (), (1ist num)) but also data
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(e, (5), (cons num), (nil), (nil num))
or predicates(ie., (append)).

3. 2 Programs

Derinition 5 (Definite Clause) : A definite clause
(or simply a clause) is a formula of the
form

H<B,, -, B,.

where H,By, --,B,€A(n>0). H is called a
head (or a head object). Each B; is called a body
object, and the sequence By, - .B, is called a
body. O
The regularity of objects and abbreviated
notations are now applied in the scope of one
clause.
DeriniTion 6 (Programs) : A program is a set of
clauses. O
For simplicity, assume in Lyg are executed by
SLD-resolution, which is usually used in LP lan-
guages such as Prolog. It is known that
SLD-resolution is an equivalent transformation
[4] .The definition of unification algorithm used in
SLD-resolution is omitted in this paper.

4 Higher-Order Expressions

Here, let us consider expressing some atomic
fomulae (atoms). Relations {1ist—cons, list
—nil, pred —append, pred —and, pred
—map } are given. First, consider the first—
order predicate append ., which forms an atom
with three lists. The proglam for append is

[(append) [(nil)] X:[()] X] .
[ (append) [(cons) A:[()] X:[()]]
Y:[()]
[(cons) A Z:[()]]1] «
[ (append) X Y Z].

Thus, LHS can express first-order clauses with
atomic objects. Atomic objects give theoretical
foundations to clauses.

Next, consider the higher-order predicate
and, which makes a logical conjunction of two
atoms. The program for and in Prolog-like
style is :

and(P, Q) :- P, Q.

The corresponding program in LHS is :

[(and) P:[(pred)] Q:[(pred)]]«
P, Q.

Thus, Lyg also seems to be able to express
higher-order predicates such as and.

Next, consider the higher-order predicate
map, described in Section 1. The program for
map in Prolog-like style is :

map(P/ []/ []) [
map (P, [E1|R1], [E2|R2]) :-
P(E1l, E2), map(P, R1l, R2).

The corresponding program in LHS is

[(map) [(pred)] L:[(nil)] L]+<.
[ (map) P:[(pred)]
[(cons) E1:[()] R1:[(list)]]
[(cons) E2:[()] R2:[(list)]]]+«
P:[(pred) E1 E2], [ (map) P Rl R2].

This results in a class violation, since the first
occurrence of an object referred to by the vari-
able P includes no substructure, and the
second object referred to by the variable P in-
cludes two subobjects, E1 and E2. as a sub-
structure. Of course, P: [ (pred)] and P: |

(pred) E1 E2] are unified in  P': [ (pred)

E1l E2]. However. since the
P: [ (pred)] must express only the name of
a predicate as the argument of map, it must not
have the substructure. Thus, the two objects

former

contradict each other, and we can not express
the clauses that satisfy demands from both ob-
jects referred to by P. This is not a problem of
abbreviated notations, but rather one of limited
abilities for higher—order expressions in LHS-
Atomic objects defined in Definition 4 can not
give theoretical foundations to expressions such
as map. In the next section (Section 5), as a
solution for this problem, we provide an exten-
sion to Lyg.
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5 An Extension to Ly¢-Class Objects

The above class violation occurred because two
different objects P:[(pred)] and P:[(pr
ed) E1 E2] were taken as the same objects.
The first object should represent only a predi-
cate name as the first argument of map, and the
second object should represent a whole atom.
These objects are essentially different.

In fact, the first subobject should not be the
atomic object P: [ (pred)] . Atomic objects
represent atoms; however, the first subobject
must represent only the name of a predicate.
Classes represent names of predicates in atoms.
Therefore, we provide a new method in order
to express the idea of “the same classes.” It is
called a class object.

DeriniTion 7 (Class Object) : A class object is a
pair (0,,¢) , where & € V and ¢ € C*.C stands
for the set of all class objects. O

Greek letters are used for the variables of
class objects®. Using a programming language
style, a class object (Oc,c) is written as O:c,
and abbreviations that are similar to those of
atomic objects are used.

The definition of the atomic object is changed
from DeriNTION 4 to the following definition.
DeriniTION 8 (Atomic Object (new)): An atomic
object is a triple (X,c,s). Each part of it is de-
fined recursively:

e XeV,
e ce(,

o s=(s1,"",8n), i€ AUC, i=1,---,n(n>
0).

Using the class object, the map clause is ex-
pressed as :

[ (map) o: (pred)]
[(cons) E1l:[()]RL:[(list)]]
[(cons) E2:[()IR2:[(list)]]]«
[o0 E1 E2], [(map) O R1 R2].

3There are no essential differences between vari-

ables for class objetcs and those for atomic objects.

There is no class violation with these clauses.
Here, let us consider the and clause again.
Supposing we use class objects, it may be :

[(and) [o: (pred)] [P: (pred)]] +«
(o], [PI.

On the left-hand side, and receives two atoms
as its arguments. In executing this program,
supposing a query is given and the first argu-
ment of the query is [ (append) XY Z] .,
then O.: (pred) and (append) are unified in
o : (append), and then the name of the predi-
cate (append) is passed to the body object via
the wvariable O . Other information of the
append
X, Y, Z, however, is not passed to the body ob-
ject, since the variables that refer to them are
not specified. Alternatively, the arguments of
atoms that are arguments of and may be expli-

atom, which is expressed by

citly specified as

[ (and)
[a: (pred) X:
[B: (pred) P:
o XY Z], [B

(O1Y:0012Z:00)11]
(O1Q: 10111 «
P Q].

In this case, the number of arguments of the
atom that is the first argument of and is fixed
at three, and the number of arguments of the
second atom is fixed at two. If a query [ (and)
[(pred) X1 Y1] ---] is given, [O: (pre
d) XY Z] and [(pred) X1 Y1] are uni-
fied in [o: (pred) X2 Y2 Z], and then the
information that X1 and Y1 originally have is
passed to the body. In this case, Z is useless, If
a query whose first argument is[(pred)W
X Y Z] is given, then the unification ends in
success, but Z is not passed to the body. Of
course, these are similar to the second argu-
ments of and. Thus, this style of and that uses
class objects is incomplete. The and clause that
uses variables to refer only to atomic objects
and does not use class objects is correct.

Thus, two kinds of higher-order clauses exist:
one is a whole atom (for and) and the other is
only the name of a predicate (for map).

In this way, class objects extend the ability of
atomic objects. Atomic objects and class objects
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give theoretical foundations to the two kinds of
higher-order expressions, i.e, and and map.

6 Related Works

As pointed out by M. Hanus, higher-order ex-
pressions, such as map, can not be expressed
by replacing them with first-order objects. This
means that a framework for dealing with
higher-order objects is essential. Every objects
in Lyg has a variable, a class and a substruc-
ture. The substructure is a sequence of (sub)
objects. Since objects can express atoms, and
variables can refer to any objects, objects in the
original version of Lyg can deal with higher-
order expressions such as and. Since atomic ob-
jects can not refer to predicates, they can not
express other higher-order expressions such as
map. This means that there are two kinds of
higher-order expressions: one is a whole atom
and the other is only a predicate.

Since class objects can express predicates,
class objects can refer only to predicates from
atom. As a result, LHS objects have had the
ability to deal with both and clauses and map
clauses with theoretical foundations.

This section discusses some other higher—
order logic programming languages with re-
spect to these two points; Ze. (1) whether the
variables can refer to atoms (for and), and (2)
whether there is a theoretical mechanism for
taking only predicates from atoms (for map).

HiLog [5.19] expresses the second clause of
map as follows:

map (T) ([E1|R1], [E2|R2]) :-
T(ELl, E2), map(T) (R1, R2).

Since the variable T stands for some predicate
names, HiLog can take a predicate name from
an atom. However, since Hilog's variables do
not refer to whole atoms, HiLog may express
the and clause in an inflexible style.

‘For practical purposes, a built-in function
root_sort () is provided.

5In fact, map is implemented as a built-in function
in LIFE.

AProlog [16,17,18] provides higher-order ex-
pressions by amalgamating Horn clauses with

A- calculus. It expresses the second clause of
map as :

map P (X::L) (Y::K) :-
PXY, map P L K.

The variable P refer to a predicate name or a
A -term that expresses a function (or an anony-
mous function). There are no variables that re-
fer to atoms. AProlog may also express the
and clause in an inflexible style.

LIFE[ 1] (or its ancestor LocN[ 2 ]) is based
on Y -terms, which express all objects, includ-
ing atoms. Variables refer to any Y -terms, and
the and clause in LIFE is :

and(1=>P, 2=>Q) :- P, Q.

However, since there is no theoretical mechan-
ism that takes only predicates (sorts in LIFE)
from atoms (Y-terms in LIFE)*, LIFE can not
express map°.

Just as in LIFE, variables in Typed Feature
Structure (TFS) [6,13,14] can refer to atoms. The
and clause in TFS is

AND =
[A:#P ATOM, B:#Q ATOM]:-#P, #Q.

However, also as in the case of LIFE, since
there are no variables for only predicate names
(types in TFS), TFS can not express map.

7 Conclusions

As described above, there are two different
kinds of higher-order clauses. One is a whole
atom and the other is only the name of predi-
cate. Variables in the original version of Lyg re-
fer to whole atoms but can not refer to only
predicates. As a solution, this paper provided
class objects as an extension to the class system
in Lyg. Class objects allow atomic objects to re-
fer to predicates. Atomic objects and class ob-
jects give theoretical foundations to these two
higher-order expressions.
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