65

Statistics by Computer without Spreadsheets

KAWAGUCHL Yuuichi*

(Received 30 NOVEMBER. 1998)

Abstract
This paper shows (1) to compute basic statistical data in Perl and (2) to make them
graphs with GNUPLOT. Perl and GNUPLOT can run on many computing environ-
ments, such as UNIX, X window system, Microsoft Windows series, MS-DOS, Machin-
tosh, and so on. Therefore, those method provides not only the way that does not need
heavy spreadsheet applications, but also the independent way of computing environ-

ments. This is very flexible.

1 Introduction

We teachers usually process statistical data[1],
ie.,, data of our students. Most of them are the
points of examinations. I use the word “statisti-
cal,” however, in this case it does not means
any high level statistical processings. It means
a very basic statistics, such as a total, an aver-
age, a standard deviation, and so on.

For processing data of students statistically,
ordinary people use a spreadsheet software,
such as Microsoft EXCEL and Lotus 1—-2-3.
These softwares have many useful functions.
Needless to say, they can calculate a total or an
average, can sort points in order, and even can
eliminate candidates!! They also can make
graphs or make lists of those numbers. Thus,
they are very useful. For a poor worker like
me, however, they are too heavy. Not only the
prices of them are very expensive, but also
they use the very large amount of disk space
and RAM, reaching up to 500 mega bytes and
64 mega bytes or above, and they need a high-
performance CPU that is very expensive (espe-
cially for me).

This paper aims to show the way to process
statistical data without such heavy spreadsheet
applications. To put it concretely, I show the

*Associate Professor: Department of Com-
puter Engineering

way to program such processings by a pro-
gramming language. In this paper, I use a lan-
guage Perl[2]. By Perl, programmers can write
powerful and efficient application programs
with very simple notations. Perl can run on
UNIX, MS-DOS, Microsoft Windows
3.1/95/98/NT, maybe MacOS, and so on. There-
fore once a programmer wite an application
program by Perl, it can run on different operat-
ing systems without changing. There are many
other languages that can run on some different
operating systems. I chose Perl out of them
since it is free, is very powerful especially in
processing text, is used for a long time in the
world, and is the most stable. New and evolving
languages, such as JAVA[3], are updated
repeatedly in a short cycle, and in every time
the specifications of them changes widely. I can
not wait them to be stable.

Spreadsheets can make graphs of data. Perl
can not do that, however, there is a useful
application program GNUPLOT[4]. It can run
on UNIX with X window system, MS-DOS,
Microsoft Windows series, and Machintosh
series, and so on. In this paper, I show the way
to make graphs by using GNUPLOT.

This paper is written on the assumption that
readers have experiences in C or other proce-
dural programming languages.

66 EMNRITEBSSEMERLEE N T

2 Programming Language Perl

Perl is an abriviation of “Practical Extraction
and Report Language.” It provides many pow-
erful and efficient functions to programmers. In
many cases, programs in Perl are compact than
those in C. Perl is an interpreter language. Pro-
grams in Perl may take more time than those
in C. In the rest of this section, I explain how to
program in Perl, comparing with C.

2.1 Syntax

Any procedural programming languages
have three control structures, (1) seqnential exe-
cution, (2) branch, (3) iteration. Perl also has-
them. Perl can recognize the syntax for control
structures like C,if-else and while. Perl has
more statements, but for the sake of simplicity
I use them in this paper.

2.2 Variables

When programer use variables in Perl, it is
not need to declare them. This is different from
C. The name of variable in Perl must begin
with ¢ sign. The second letter can be _, a-z,
and A-Z. The third or later can be _, a-z, A-2,
and 0-9.

These are examples of valid names for vari-
ables:

Sa,%a_b,$pen_1

2.3 Functions and Arguments

Similarly to C, Perl has an ability to build and
call user-defined functions. Those are called
“subroutines” in Perl. To define a subroutine,
programmers should use the following syntax:

sub subroutine {
statements

}

In calling the subroutine, use the following
syntax:

&subroutine

In passing arguments to subroutines, use the
following syntax:

&subroutine arguments

Arguments are separated by commas. Subrou-
tines receive the list of arguments in a variable
@_. To assign each argument into differnt vari-
ables, use the syntax:

sub subroutine {
(sa, Sb, *-*) = @_;
}

In this case, each arguments are assigned into
$a, $b, * *. These variables are local.

The value of the last statement in the sub-
routine is returned.

24 1/0

In input/output operations, data are given
and taken via filehandles. Filehandles are cre-
ated by open operator. In default, Perl provides
three filehandles, STDIN, STDOUT, and STDERR.
They correspnd to stdin, stdout, stderr in
C respectively.

By using open, filehandles are linked with
files. Suppose that file is a file, and FH is a
filehandle, then

open (FH, "file")

links FH with file. In this case, data are read
via FH from file. To write data to files, call
open as:

open(FH, "> file")

The ‘>’ shows data are written into file.

In any cases, open returns a false status if it
errors. By using this mechanism, the following
statement is usually used:

open (FH, "> file") 11
die "can't open: file\n";

This statement have a meaning such as “open
the file, or die.”
To read data via a filehandle, use the syntax:

$line = <FH>

Statistics by Computer without Spreadsheets 67

This statement assigns the variable $1ine to
one line from a file via a filehandle ¥H. This
statement returns a false status when there are
not unread data. By using this mechanism, to
read all lines from file, the following statements
are usually used:

open (FH, "file") I die "bye\n";

while ($line=<FH>) {
statements

}

Alternatively, to write a data into a file via a
filehandle:

print FH data

In this case, the data can be variables, con-
stant numbers, or strings. When FH is STDOUT
or STDERR, data are shown on a CRT (or LCD,
and so on) display.

When date are completely read, the file
opened by open must be closed by close:

close (FH)

This statement closes the file linked with the
filehandle FH.

3 Statiscies by Perl

This section explains the way to compute sta-
tistical values by using Perl without spread-
sheet applications. Some fragments of programs
are shown.

3.1 Conventions
There is a file named points. dat. This

includes the points ofstudents in a class. The
format of the file is:

stud prog circ netw
abe 90 65 80
aoki 70 35 40
fujita 45 85 70
jiro 60 60 20

Of cource they are not real students. They are
virtual students for this paper. The number of
students are unknown, however, when students

and their points are completely read from the
file, Perl can compute the number of lines read.
It implies the number of students.

At the top of the program, there are state-
ments shown in Fig. 1.

#!/usr/local/bin/perl

open(FH, "points.dat") ||
die "Can’t open: points.dat\n";
$line = <FH>;
chop($line);
@subjs = split(/[\t\n]/, $line);

@points = ();
while ($line=<FH>) ({
chop($line);
push @points, $line;
}
close (FH) ;

Figure 1: At The Top of The Program

Data read are stored into the array named
@points, and the variable $#points is
assigned the number of students. The notation
$#points stands for the last index number for
the array @points. Since the top of the lines
stored in the file is a headding, it is read and
stored another array $subjs. The operator
split divides its second argument into ele-
ments by its first argument, and returns tha
array that includes all the elemnts. The first
argument is /[\t\n]+/. This notation is
called a regular expression. This stands for “the
sequence of a space, a horizontal tab, and a new
line.” Therefore, the heading line is devided by
any white spaces and stored into the array
@subjs respectively. Note that the element
stored in $subjs[0] is the string stud, and
this does not stand for any subject. This ele-
ment should not be used.

3.2 Total

There are two kinds of total points. One
is a total by a subject, and another is by a stu-
dent. The total points by a student are com-
puted by the fragmnents shown in Fig. 2.

This fragments outputs:

68 HEABMIEBEFEMERLEE N T

abe 235
aoki 145
fujita 200
jiro 140

@name = ();
@tot std = ();
for ($i = 0; $i<=S$#points; $i++) {
@pt =
split (/[\t\nl+/,$points[$i]);
push @name, $pt[0];
push @tot_std, 0;
foreach $p (1..s#pt) {
$tot std($1i] += S$ptlspl;
}
!

foreach $1 (0..
print STDOUT
"S$name [$1]\tStot std[Sil\n";

$#name) {

Figure 2: The Total by A Student

Suppose the name of the file storing the pro-
gram in Perl is total-std.pl, then type the
following line to the prompt from the operating
system to execute it:

host$ perl total-std.pl

The line underlined stands for the line typed
by a user.

The following fragments computes the total
points by a subject is shown in Fig. 3.

@tot sub = ();
foreach $i (1..$#subjs) {
push @tot sub, 0;

}
for ($i = 0; S$i<=S$#points; $i++) {
@pt =
split (/[\t\nl+/,$points($il]);
foreach $p (1..$#pt) {
$tot sub[$1i] += Spt(Spl;
}
}

foreach $i (1..S%#subjs) {
print STDOUT
"Ssubjs[$il\tStot sub[$il\n";

}

exit 0;

Figure 3: The Total by A Subject

The fragment outputs:
prog 265
circ 245
netw 210

3.3 Average
An average is easily computed by:
average = total ~number

In this case the value of number is assigned into
the variable s#tot_std or $#subjs - 1in
Perl. I omit the fragments of the porgram in
Perl.

3.4 Standard Deviation

Suppose data are stored into x; (i =1, ,n),
then thestandard deviation of them is denoted
by s and is computed by:

5=% i:lei, s= %E(xi—i)z,
where x stands for the average of xi's, and
it is already computed by Perl in the avobe sec-
tion. In this section, I compute the standard
deviation of the total points by a student. The
fragment to compute them is shown in Fig. 4,
where the average of @tot_std is assumed to
be assigned into the array $ave. The operator
sqrt compute the square root of its argument.

$s = 0;

foreach $p (1..$#tot.std) {

$a = Save - Stot.std[Sp]l:

$s += $a * Sa;

}

$s S#tot_std;
$s = sart S$s;

}

print STDOUT "S$s\n";

Figure 4: The Standard Deviation

3.5 Sorting

Perl has a useful function for sorting data. In
the case that data are stored into an array, @a,
the statement to sort them is:

@b = sort @a

Statistics by Computer without Spreadsheets 69

where @b has the sorted array out of @a. In
fact, outputs may want to be like:

name total

To do this, different arrays @name and @tot_std
are sorted at the same time. In this case, Perl’s
sort is no use. I write a subroutine by myself.
It is shown in Fig. 5.

sub sort.2 {
for($i=0; $i<=$#name-1; $i++) {
Smax = $1i;
for($j=%$i+1; $j<=S#name; $j++){
if (Stot_std[Smax] <
$tot_std[$3]) {
$max = $3;

}

$w = S$tot_std[S$max];
Stot_std[$max] = Stot_std[$i];
Stot_std[$1i] = Sw;

Sw = Sname[Smax];

$name[$max] = S$name[$i];
$Sname[$1] = Sw;

Figure 5: Subroutine for Sorting

To call this function, do simply:
&sort_2

It is not needed in newer version of Perl to
specify ‘&’ for calling subroutines. The sub-
routine sort_2 uses the famous algorithm for
sorting dada, “Selection Sort,” which is the
most simple and efficient out of many sort algo-
rithms, when the number of data is small.

4 Make Them Graphs

This section explains the way to make data
graphs by using GNUPLOT. The version string
of it is“Linux version 3.5, patchlevel 3.50.1.17, 27
Aug 93

In the subsections, I show three example of
the graph of their total points and average of
them. Their total points are computed in Sec-
tion 3.2. The average of them is 180. Their
points are placed on the vertical axis. Their
names are placed on the horizontal axis.

4.1 Dots

When data are stored into a file, for example
named “tot-std.dat,” with the format such
as:

0.5 235
1.0 145
1.5 200
2.0 140
2.5 180

GNUPLOT can read it and make them graph
easily by entering the command:

plot [0.0:3.0] "tot-std.dat"

where “[0.0:3.0]" specifies the range of
horizontal axis. The range of the vertical axis is
automatically decided by GNUPLOT in accord-
ing to given data. This plot command makes a
graph shown in Fig. 6.

240

v ——
o “tot-std.dat” o
230 1

220 |
210

200 °

Figure 6: Plots by Dots

Horizontal axis is numerically plotted by 0.5,
however, I want to place the names of the stu-
dents. To do this, the following commands
should be entered:

set xtics ("abe" 0.5, "aoki" 1.0,—
"fujita" 1.5, "jiro" 2.0,—
"avg" 2.5)

The result of the command is shown in Fig. 7.

4.2 Lines

To draw an average line in the graph rather

70 HEABMIE(EBFEMERLESE N T

to plot it, (1) remove the last item in the file
“tot-std.dat,” renaming it “tot-std2.dat,”
and (2) enter the following commands:

plot [0.0:2.5] "tot-std2.dat"
replot 180 with lines

240 —r T

“tot-std.dat” o
230
220 |
210 +
200 <
190 -
180
170
160 +

150 +

140

ave aoki fujita jiro avg

Figure 7: Names on The X Axis

This results in Fig. 8.
The second argument for replot, ie, 180,
stands for the equation y = 180.

240

. “tot-std2.dat” o
180
230

220 |
210
200
190

180 - NN

170

160

150 |

140

abe aoki tupta Jjiro

Figure 8: An Average Line

4.3 Boxes

In graphs shown in avobe sections, points of
students are plotted by dots. In this sction,
boxes are used. To do this, enter the command:

plot [0.0:2.5] "tot-std2.dat"—
with boxes
replot 180 with lines

This results in Fig. 9.

240 —

“tot-std2.dat” —
180 -
230

220
210
200 F
190

180

170 +

—

abe aoki fujita jiro

Figure 9: Jiro is not Shown

In all cases, the points of jiro is the minimun,
and GNUPLOT automatically decides to place
the point on the ground level. To change the
range of the vertical axis, enter the command:

plot [0.0:2.5] [0:300]—
"tot-std2.dat" with boxes
replot 180 with lines

This results in Fig. 10.

300

T
“tot-std2.dat” —
180

250 -

200 - e ———

100 +

s s L s
abe aoki tujita jiro

Figure 10: Jiro is Shown

5 Concluding Remarks

This paper shows (1) to compute basic statis-
tical numbers and (2) to make them graphs.
Perl and GNUPLOT can run on many comput-
ing environments, such as UNIX, X window
system, Micosoft Windows series, MS-DOS,
Machintosh, and so on. Therefore, those method
provides not only the way that does not need
heavy spreadsheet applications, but also inde-
pendent way of computing environments. This

Statistics by Computer without Spreadsheets

71

is very flexible.

Acknowledgement

When I write this paper, I use Mule for the
editting software, IATgX 2¢ for the typesetting
software, and shin-eiwa- waei chujiten in CD-
ROM for the English — Japanese dictionary.
These are very useful. Without them, I coudn’t
write this paper, and can’t write any other
papers in the future. I thank those fine soft-
wares and the authors of them. If, however,
more useful softwares appear in me, I maybe
use them.

References

[1] Kichirou Takamatsu, Tashiro Yoshihiro, joho
no kisosuugaku, Baihu Kan, 1988.

[2] Larry Wall, Tom Christiansen, Randal L.
Schwartz, Programming Perl 2nd Edition,
O'Reilly & Associates, Inc., 1996.

[3] Patrick Niemeyer, Joshua Peck, Exploring
JAVA 2nd Edition, O'Reilly & Associates,
Inc., 1997.

[4] Michirou Yabuki, Tsuyoshi Ootake,
tsukaikonasu GNUPLOT, Techno Press,
1996.

