65

Unification Algorithm for Objects with Classes and Substructure

Yuuichi KAWAGUCHI *

Kiyoshi AKAMA * *

Eiichi MIYAMOTO* * *

(Received 29 November 1999)

Abstract

Unification is a basic and important operation for executing logic programs. Tradi-
tional theories of logic programming languages provide unification algorithms for
terms consisting of constants, variables, and functions. There are many situations
in which more complex expressions than such terms are needed to represent com-
plicated knowledge or other objects. Although some unification algorithms have
been provided for such objects, their theoretical basis lack of clarity. This paper
presents an unification algorithm for objects that have class hierarchies and sub-
structures. We provide a formal definition of the target language. The definition
consists of two parts: (1) the structure of objects and (2) basic methods to operate
them. Based on these theoretical basis, we present an algorithm and prove that our
algorithm can unify two objects and that it terminates in a finite number of steps.

Key words : Class Hierarchy, Substructure, Class Object, Atomic Object, Unifica-

tion.

1 Introduction

In many logic programming languages, resolu-
tions are generally used for executing programs.
Resolutions use unifications. Unification is a ba-
sic and important method for executing programs.
Lloyd [5] provided a unification algorithm for
atoms based on terms. He proved that the algo-
rithm unifies two atoms and terminates in a fi-
nite number of steps. Logic programming lan-

* Department of Computer Engineering,
Tomakomai National College of Technolo-
gy, Aza-Nish-ikioka 443, Tomakomai,
Hokkaido. 059-1275, Japan
yuuichi@jo.tomakomai-ct.ac.jp

* % Center for Information and Multimedia

Studies, Hokkaido University, Kita 10,

Nishi 5, Kita-ku, Sapporo, Hokkaido.
060-0810, Japan

* % % Division of System and Information Engi-

neering, Hokkaido University, Kita 13,

Nishi 8, Kita-ku, Sapporo., Hokkaido,
060-8628, Japan

guages use not only terms but also more complex
objects for expressing complicated knowledge or
data efficiently. For objects that have a more com-
plex structure than terms do, unification algorithms
are complicated. Previous reports [1, 2] have de-
scribed such objects and provided an unification
algorithm, but they maybe not interested in proofs
of it.

This paper presents a unification algorithm for
objects that have class hierarchies and substruc-
ture. Such objects are more complex than terms
are. They can express some knowledge or data
more efficiently than terms can. We have con-
structed a framework for expressing and executing
programs based on such objects. Using the frame-
work, we present an algorithm and prove that it is
a unification algorithm and that it terminates in a
finite number of steps.

2 The Language

This section provides formal definitions of the tar-
get language, LHS. Intuitive meanings of the lan-



66 EAMIERSEMNERELEESF

guage are described in [3].

2.1 Program

A set Cis given. Each element of C is called a con-
stant. The set € has a relation over it, denoted as
—, and the following two conditions are assumed
to hold.

Condition 1: For Va € C, any .sequence

x1,,x, € € (0 < n) must not satisfy a —
Xy = -+ = x, — a. In the case of n = 0, this
condition forbids a — a. U

Condition 2: For Va € C and Vx,y € C, if both
x—a and y— a hold, then x = y holds. ]

Definition 1 (Descendant Relation for C)

For a,b € C and the relation — over C, a is the
descendant of b and is denoted as b = a, iff one of
following conditions holds:

(1) a=b, or

(2) there exists some constants
X1, ,x, € Csit,
b=x1— - >x,=a(l <n< o)

H

The above two conditions are mutually exclusive.
By Condition 1, if the condition (2) holds, then a #
b.

Proposition 1 ForVa,beC,a>bandb > a=
a=h.

Proof. Suppose a # b. By Definition 1, a = b im-

plies that there exists some constants xj, -+, X €
C(0<m)suchthata=x; — -+ = x,, = b. Sim-
ilarly, b > aimplies that b =y, = --- > y, =a

(0 < n). We then have a sequence a = x; — -+
— Xy =b=y, — --- = y, = a. This contradicts
Condition 1. Therefore, a = b must hold. []

Definition 2 (Class) A class is a sequence of zero
or more constants. The length of a class is the num-
ber of constants constructing the class. C*stands
for a set of all classes. ]

Suppose C = {list,nil,num}, then the follow-
ings are examples of elements in C*:

(), (List), (list,num), (nil),---

Definition 3 (Descendant Relation for C*)

Similar to the case of C, for two classes ¢ =
(Cla'”)cm) and d = (dla"'adn) (O < m7n)’ cis
the descendant of d and is denoted as d - c, iff the
following conditions holds:

n<m, and
diSci(i=1,---,n).

W

Another set V is given. Each element of V is
called a variable. The set V is a disjoint of C, i.e.,
NV =o.

Definition 4 (Class Object) A class object is a
pair (@, c), where o € Y and ¢ € C*. C stands
for a set of all class objects. (]

Definition 5 (Atomic Object) Let 4 be a set such
that:

ﬁl={(X,x, (al)"'aan))l
XeV,xe(,
ai,---,a, € AUC,0 < n < oo}

Each element in A is called an atomic object (or
simply an object). The class of the class object x
is also called the class of the atomic object. Each
a;(i = 1,---,n) is called the subobject of the ob-
ject, and the sequence (a\,---,a,) is called the
substructure of the object. Note that atomic ob-
jects always have a substructure. Even in the case
of n =0, it has a null sequence of subobjects, i.e.,
(), as its substructure. ]

The variable of a class object is sometimes
called a class variable, and the variable of an ob-
ject is sometimes called an object variable, when
variables need to be distinguished. Let V. be a set
of all class variables, and V¥, be a set of all ob-
ject variables. ¥, V, C V holds, and it is assumed
here that V. NV, = ¢.

For an object a € AU C, the set of all variables
appearing in a is denoted by V (a).

Fig. 1 shows examples of atomic objects, where
C = {append, list,nil,num,5,inc,apply}, VY. =
{0,B,Y,--} and ¥V, = {4,B,C,---}.

o (X, (a, (nil)), ()
o (Y ,(B, (list,num)),

({4, (v, (5)), 0): (R, (12, (List)), (1))



Unification Algorithm for Objects with Classes and Substructure 67

Figure 1: Examples of Atomic Objects

Definition 6 (Clause and Program)
A definite clause (or simply a clause) is an ex-
pression H«B\,--- B, with some H,By,---,B, €
A(0 < n). H is called the head (or head object) of
the clause. Each B;(i = 1,---,n) is called the body
object of the clause, and the sequence By,---,B, is
called the body of the clause.

A declarative program (or simply program) is a
set of some definite clauses. (]

2.2 Operations

This section describes operators to operate objects.
Operations are called specializations. Some spe-
cializations have a direction.

221 MGCD

Definition 7 (MGCD) For two classes s,t € C,
a class u € C* that satisfies the following condi-
tions is called the most general common descen-
dant (MGCD) of s and t, and such u is denoted as
Y(s,1):

s=u,t > u, and
forvu' € C*,s=u',t=u = uxu.

The MGCD of two classes does not always exist. If
it does not exist, it is denoted as Y(s,t) = L. For
any class s, Y(s, L) and Y( L, s) are not defined.

O

Proposition 2 [f the MGCD of two classes is not
L, itis unique.

Proof. For s,t € C*, assume that u = Y(s, ¢) and
v=7Y(s, t) (u,v# L). Both u>v and v>u hold
by Definition 7. The length of « and the length of v
are equal by Definition 3. Suppose that the length
of u (and v) is n, then we have u = (uy,---,u,),v=
(vi,+++,v,) and both u; X v; and v; = u; for each
i=1,---,n. By Proposition 1, u; = v; for each i =
1,---,n. Thus, u = v. ]

For two classes s = (s, --,5») and t =
(t1,-+,ta) (0 <n < m), letus consider the follow-
ing algorithm.

Algorithm 1

l. Foreachi=1,---n,

o ifs; 5 t;, then assign u; :=t;.
. * .
o ift; — s;, then assign u; == ;.

o otherwise assign u = 1, and exit this
algorithm.

2. Assignu;:=s; foreachi=n+1,---,m.

3. Assignu:= (uy, -, Upy).

[

In the following propositions, we use the same
notations as those used in Algorithm 1.

Proposition 3 Ifu# L, thenu=Y(s,1).

Proof. [Most general] Suppose that for some v =
(vi, --,vw) € C*, both s>v and t>v hold. s>v
implies m < k. By the definition of >, s; 5 Vi
and #; 5 v; for each i = 1,---,m. If 5; =t then
Ui =t > v;. Altematively, if t; > s; then u; = s; > v;.
Therefore, in both cases, u > v holds.

[Common] The length of the class u is m. The
length of s is equal to m, and the length of ¢, i.e.,
n, is less than or equal to m. Foreachi=1,---,n,
if s; = t; then u; = 1;, and this implies that s; S
and #; 5 u;. Alternatively if ¢ 5 si, then u; = s;,
and this implies that #; = u; and s; — ;. Thus, in
any case, t > u. Foreachi=n+1,---,m, we have
i 5 u;, since u; = s;. Thus, s> u. ]

Proposition 4 [f the MGCD of s and t is not L,
then Algorithm 1 always derives it.

Proof. Let v = (v;,---,v) be Y(s, 1) # L (m,n <
k).

(1) Assume Algorithm 1 succeeds and derives
u# 1. Wehave u=v=7Y(s, t) by Proposition 2
and 3.

(2) Assume Algorithm 1 derives L. This im-
plies that neither s; Stinort; S s; for some val-
ues of i. v=Y(s, t) implies that s; = v; and t; = v;
for all i =1,---,n. There are four possible cases
according to Definition 1:



68 B I ERSEMERELEE IS

1. s; = v; and t; = v;; this implies that s; — #; and
t; —*-) S;.

2. si=s! = =5¢=v; (1 <a)andt; = v;; this
implies s; 5 L.

3. 5i,=v; andt,-zt,.'—> —)t{’zv,- (l Sb);this
implies 1; 5 5.

4. s,-=s,~'—>~-—)s =viandf; =t/ - - —)t{’
=v; (1< a,b); we have s¢ =1r?, and by Con-
dition 2, s“'—t - s,—tl ““ifa <b.
This implies #; = s;. Otherwise, ifb < a, then
we have s{'~ ~b =t This implies s; = ;.

In all four cases, either s; = #; or ti > s; holds.
This contradicts the assumption. Therefore, Algo-
rithm 1 always succeeds, if Y'(s, t) # L. []

Propositions 3 and 4 ensure that the MGCD of
two classes is not L, iff Algorithm 1 derives it.

Proposition 5 For s,t € C*, suppose u=Y(s,t) #
L, then Y (s, u) = Y(t, u) = u

Proof. By Proposition 4, u is derived by the algo-
rithm. Foreachi=1,---,n, either s; = 1, or t; - S
holds according to the assumption of this proposi-
tion.

The length of Y'(s, u) is m, since the length of s is
n, the length of wismand n <m. Fori=1,---,n
if s; = 1, then u; = t; and we have s; = u;. Other-
wise, if ; 5 i, then u; = s; and we have s; 5 u;.
Thus, s; = u; always holds for i = 1,---,n. We
have u = Y'(s, u) by Algorithm 1.

The length of Y'(z, u) is m, since the length of ¢
is m and the length of wis m. Fori=1,--- m, if
Si 5 t;, then u; =t; and we have t; 5 u;. Otherwise,
if t; 5 s;, then u; = s; and we have #; - u;. Thus,
1 = u always holds fori=1,---,m. We have u =
Y(t, u) by Algorithm 1. (]

2.2.2 Specialization

To operate atomic objects or class objects, there
are four basic operators. Suppose a target object is
z € AU C and a basic operator is 6, the application
of 0 to z is denoted as z[6)].

Definition 8 (Basic Operator) (/) ForX,Y €Y,
the operator X =Y exchanges all X appearing in
the object with Y.

a[Xi’,-Y]—a, ifaeC,

(Z, x, (a, )X Y]
=(Z,x, (a[X % Y),-

(X, x, (a,--))[X =Y
=(Y,x, (a[X ZY],---)).

(2) For o,B € V., the operator 0.~ B exchanges
all o appearing in the object with P.

oyl = (10
(o, 5) [OL%B] = ﬁ, s),
(X, (@) Bl |
- X,x[OL—L,B], (a[a'ﬁ"BL))

(3) For a. € Y. and t € C*, the operator o>t ex-
changes the class of all class objects specified by
the variable o. appearing in the object with t.

This operator has a required condition: there
must be a descendant relation between the source
class and the destination class. For example, when
(o, s)[o>1] is performed, Y (s, t) # L must hold.

(v, s)lowt] = (v, 5),
(o, s)[oer] = (a, Y(s, 1)),
(X, x, (a,--))or1]
= (X, x[a1], (a[at],---))

(4) For X €Y, and b € AU C, the operator X b
adds b in the tail part of substructure of the target
atomic object whose variable is X .

alX »bl=a, ifa€ C,

(Y’x7 (a|,--~,a,,))[X4>>b]
=, x, (a[X D], -

(X, x, (ar,---,a,))[X » b] =
= (X, x, (a1, --,a,,b))

,an[X 5 b]))

[

When the operator is applied to atomic objects, the
required condition is effective for subobjects recur-
sively. If a basic operator holds the condition, then
it is said to be applicable to the object. If the class
variable of an operator and the class variable of a
target class object are different, then the operator is
also said to be applicable to the object, but it does
not have any effect.

As shown in Definition 8, for a basic operator
0, if z € A4 then z[B] € 4, otherwise, if z € C then



Unification Algorithm for Objects with Classes and Substructure 69

z[6] € C.

Definition 9 (Specialization Operator) The spe-
cialization operator (or simply specialization) is a
sequence of zero or more basic operators. S stands
for a set of all specialization operators. A null se-
quence [ ] is called the unit specialization operator
(or simply unit specialization).

[Concatenation] A concatenation operation of
two specializations © = [0;,---,0,,] and o =
[o1,--+,0n] (0 < m,n) is denoted as 0-G and the
result is defined as

0-c= ﬂel,"'aelnacla"'acn]]-

[Applicability] When a specialization 0 is applied
to an object a, all basic operators in 8 must be ap-
plicable to a. In this case, 8 is said to be applicable
to a.

[Application] The application of an applicable
specialization 6 to an object a is denoted as ab and
the result is defined as

a[] =a,
{ a[[91,62,~--,9,,,]] = (a[el])[[e2a aem]] .
]

Specialization operators are extended into
clauses. Suppose that C = (H«+B,,---,B,) is a
clause and 0 is a specialization operator that is ap-
plicable to all objects H, By, - -, B,, then the appli-
cation of 0 to C is denoted as CO and is defined
as

CO = (H,0+B,96,---,B,0) .

3 Unification Algorithm

This section gives a definition of the unification al-
gorithm for atomic objects. Section 3.1 shows the
algorithm, and Section 3.2 proves that it is a unifi-
cation algorithm.

3.1 Unification

Definition 10 (Unification Operator)

For a,b € AU C, a unification operator is a pair of
two specialization operators (6,0) € S x S, which
satisfies ab = bo. ]

Obviously, we can not unify any atomic object and
any class object.

Algorithm 2 For two class objects, (o, s) and
(B, t), the algorithm for unifying them is defined
as follows. If the unification of them is successful,
a unification operator is obtained.

1. Compute u=1Y(s,t). Ifu= L, then the whole
unification fails. If u # L, then assign ©:=
[o>u, Bru].

2. Assign 1:= 1[0~ 0, 0], where ® is a
new class variable.

3. We have (7,7) as a unification operator.

0

We omit the proof that Algorithm 2 produces the
unification operator for class objects.

An atomic object that includes its object variable
in its subobject, such as

(Xa X, ((Xv x/» ( ))7 ))7

can cause a problem. Variables work as labels of
objects in applying specializations. Objects that
have the same variable should be the same. As to
the above example, the outside object — its object
variable is X — includes a subobject whose object
variable is also X. The subobject should include
a subobject whose object variable is X. The nest
of objects infinitely succeeds. In applying a spe-
cialization operator, for example [X 2 Y], to such
an object, the operation recursively continues and
will not end. In this paper, we do not deal with this
kind of object.
The restriction is defined in Definition 11.

Definition 11 (Regular Object) An atomic object
(X, (a, s), (a1, --,a,)) (0 < n) is called a regular
object, iff the following conditions hold:

1. The object variable X does not appear in each
subobject ay,---,a,, and

2. a; is recursively a regular object for i =
1, ,n.

N

Here, all atomic objects are assumed to be regu-
lar objects. If there is no ambiguity, we call them
smply objects.

Here, we show a unification algorithm for regu-



70 EMBMIXEBEFEMERLEESS

lar atomic objects a and b:

{ a= (X7 (aa S), (ala”"aln»)
b=(Y,(B,1), (b, --,b,)),where 0 < n < m.

As to names of variables, with appropriate special-
izations p, and py, let V(ap,) NV (bp,) be ¢. Be-
fore performing Algorithm 3, the re-assignings of
ap, to a and bp,, to b must be performed.

As to the number of subobjects, the algorithm al-
lows only two cases:! (1) n = m or (2) one or both
of n and m are zero. In any other case, the algo-
rithm immediately terminates in failure.

The algorithm is defined recursively. If the uni-
fication is successful, a pair of operators (1,1) is
obtained. In Section 3.2, we prove that it is a uni-
fication operator.

Algorithm 3

1. When m = 0, this is the case of n = 0; go to
Step 6. When m # 0 and n =0, go to Step 3.
In both cases, let U be [ ].

2. This is the case of n = m # 0. Renamings for
subobjects are not needed.

Suppose that a) and b, are unified success-
Jully and a unification operator (11,1;) is ob-
tained. The specializations can have effects
on the class, and all subobjects of a and b. 0,
must be applicable to (o, s), and 6, must be
applicable to (B, t). In the next step, at, and
byT| are unified.

For each i = 1,---,n = m, if subobjects
aiTy - Ti—| and byt ---T;_| are unified suc-
cessfully, then we have (1;,7;) as a unification
operator. Let z; be ajty --- T,y - T, = bty -+
Ty Ti(i=1,---;n=m). Let T be 1y -- -1,

For some value of i, if a unification fails, then
the whole unification ends in failure.

3. If n=m, then let T° := [ ]. Otherwise, if n #
m, this is the case of n =0 and m # 0, and
Step 2 is not performed, then let T° be [Y v ay,
- Y ra,).

4. Unify (o, s)vV-1* and (B, t)T'-1". If the unifi-

"This restriction is related to the method by which pro-
grammers determine the shape of objects. In some languages,
the method is implemented as type declarations. This method
is not discussed in this paper (c.f, [3] and [4]).

cation fails, then the whole unification ends
in failure. Otherwise, the unification operator
(T¢,7°) is obtained.

Suppose that (o, s)T'-1° = (o, s'), and
(B, )t = (B, 1), then 1° = [ >u, B'ou,
o <, pSa)u=Y(s, 1), andw eV, is
a new variable. Proposition 5 ensures that
(o, s')[a'pu) = (o, Y(s', u)) = (o, u) and
(B, ) B'ou) = (B', u).

If the basic operator 1¢ is not applicable to
some of the subobjects, then the whole unifi-
cation ends in failure.

5. Equalize each object variable. Since a and b
are regular, X and Y do not appear in their
substructures, and they are not influenced by
7171, Assign vV = [X —07Z,YL),Z]], where
Z is a new object variable. 1V does not have
any effect on the subobjects.

6. The whole unification for a and b is suc-
cessful, and we have an unification operator
(1,7), where T =1 -1%1¢-7".

[

As to original objects a and b that have not been
renamed and not re-assigned, (T,-Pa, Tp-Pp) is the
unification operator.

3.2 Theorems and Proofs

In the following theorems, we use the same nota-
tions as those used in Algorithm 3.

Theorem 1 For two regular objects a and b, Algo-
rithm 3 terminates in a finite number of steps.

Proof. In the cases of n=0and m # 0, or n =
m =0, Step 2 is not performed and Algorithm 3
terminates immediately by Step 1. In the case of
n=m# 0, Step 2 is recursively performed. No
other steps are performed repeatedly. We focus on
only the case of n =m # 0, and on Step 2.

In general, the height of an atomic object g =
(G, r,(g1,-+-,8k)) is denoted as |g|, and is defined

as
lg| =0, if k=0,
|gl = max(|gi|) + 1, if 1 <.
H,E/q
By the definition, 1 < |g| —|g;| forany i, and 0 < |g|
is satisfied. Since g is regular, |g| < e is satisfied.



Unification Algorithm for Objects with Classes and Substructure 71

n =m implies T =[], and n and m therefore re-
main unchanged. 1 < |g| —|g;| implies that an ex-
ecution of Step 2 decreases the height of the ob-
ject by one or more. The minimum value of height
is zero. In finite number of execution, the height
of the object drops to zero. For an object whose
height is zero, such as (X, (o, ), ()), Algorithm 3
terminates immediately in Step 1. []

Theorem 2 For any two regular objects a and b,
assume that V (a) NV (b)
ization operators (0, 0) is obtained by Algorithm 3,
then a8 = bo holds.

Proof.
(1)Inthecaseof n=m=0: 7 =[] and T =[].

at= (X, (a,s), ()"t
= (z (

bt=

Thus, we have at = bt.

(2) In the case of n=0and m#0: U =[] and

T = [[Y-B)ala"'7,y'9)a'n]]~
at= (Xa (OL, S)a (al, ,a,,,))‘t‘. (atind
= <Xa ((X, S), ((l], ,am)>T T
= (Z’ (O‘)’ “)3 (alt‘ T‘],"'aamtt TV))
= (Za ((Da “)a (alt y ,amT ))

Since the object a is regular, the variable X does
not appear in_the substructure of a. Since V(a)N
V(b) = ¢, the variable ¥ does not appear in the
substructure of a. ¥ does not have any effect on a,
and v° = [X % Z,Y 2 Z] does not have any effect
on subobjects of a.

br= (Y, (B,1), ()"t
< ?( 1t) (al7 : am))’t -T¥

( ) ((!), “; (CI[T ) aamTL))

Thus, we have a6 = bo.

(3) In the case of n = m # 0: In this case, we use

= ¢. If a pair of special-

n for the number of subobjects. T =1 -

=]

-T,, and

at= (X, (0,s), (a5, ,a,))T 17
= (X, (o, 8)T1, (21,071, anT1))
) ..1;”.1;0.1;"
= (X, (o, )T, (2172522,
asTy-Ta, -+, ATy ))13 NP N A Ad
= (X, (o, 97,

(ZITZ Ty 213 Tyt
Zn—ltrrvzn))TC'Tv
= (Z, (0, u),

(ZIT?_ .. 'Tn'TC,Z2T3 .. 'T,,'Tc, e
Zn——ltn"tc,zntc»

br= (Z,(o,u),
(ZITZ e 1:,'.1;",221:3 .. 'T,,'TC, e

Zn—lTn'Tcaanc»

Thus, we have at = bt. In all cases (1) ~ (3), at =
b1 holds. (]

4 Conclusions

We have proven that Algorithm 3 is a unification
algorithm and that it terminates in a finite num-
ber of steps. As shown in this paper, unification
is not the most basic operation. In particular, for
objects that have a more complex structure than
simple terms do, unification is a very large oper-
ation. We successfully proved, using small and
simple operators, i.e., specializations, that our al-
gorithm is based on.

Acknowledgments

Authors thank to Youichiro Kojima in TNCT. He
often helped one of authors with many jobs in
Somei-Ryou.

References

[1] H. Ait-Kaci.  An introduction to LIFE -
programming with logic, inheritance, func-
tions, and equations. Technical report, Digital
Equipment Corporation Paris Research
Laboratory, 1993. http://www.isg.-
sfu.ca/ftp/pub/hak/publish/-
ilps93-life.ps.Z.



72 S IEBREEMERLESEDE

(2] H. Ait-Kaci and R. Nasr. LOGIN: A logic pro-
gramming language with built-in inheritance.
The Journal of Logic Programming, 3:185 —
215, 1986.

[3] Y. Kawaguchi, K. Akama, and E. Miyamoto.
Representation and calculation of objects with
classes and substructures — a simple computa-
tional framework based on logic —. Journal of
Jsai., 12(1):48 - 57, 1997.

[4] Y. Kawaguchi, K. Akama, and E. Miyamoto.
Applying program transformation to type in-
ference on a logic language. /EICE Trans. on
Inf. & Syst., E81-D(11):1141 - 1147, Novem-
ber 1998.

[5] J. W. Lloyd. Foundations of Logic Program-
ming. Springer-Verlag, second edition, 1987.



