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Abstract

This paper consttucts declarative semantics for a language that can deal with class
hierarchies and substructure. Lloyd has successfully constructed declarative se-
mantics for a programming language with terms. In some cases, objects that are
more complex than terms are needed for efficient or direct expressing. For each
of those objects, its original extention has added to Lloyd’s theories. They lack a
global viewpoint. Our theoretical basis for constructing semantics is a theory of
declarative computation model (DP). DP gives us a method of constructing seman-
tics independently of particular objects. DP deals with programs on a four-tuple
(4, G,S,u), called a specialization system. We construct the specialization system

for our language in this paper.
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1 Introduction

There are two kind of semantics of programs; one
is declarative- semantics and another is procedural
semantics. We are interested in declarative seman-
tics. This paper constructs declarative semantics
for our target language LHS [7] that can deals with
classes and substructures.

Lloyd [8] has constructed declarative semantics
for Prolog. Prologonly uses terms that consist of
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constants, variables and functions. Terms can ex-
press many kinds of knowledges or data, but there
are some cases where more efficient or direct ex-
pressions are needed. Expressing classes and sub-
structures are the instances of such cases. Some
programming languages for those objects are pre-
sented, such as LIFE [2] and A Prolog [9], and
declarative semantics of them are constructed.

In many cases, they have constructed theories by
adding its original extension to Lloyd’s declarative

semantics. Each theories is independent of other
theories. It is hard for us to see the relationship be-
tween their theories. For example, we do not see
the relationship between LIFE’s w-terms and pro-
grams in A Prolog. They lack the global theories
that combine them.

This paper construct declarative semantics for
LHS. Our theoretical basis is a theory of declara-
tive computation model. It is also called DP [3].
DP gives a method of constructing semantics of
programs. The method is independent of partic-
ular programming languages or objects. It is very
flexible. We get a global viewpoint with DP.
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2 General Framework

This section introduces our theoretical basis for
constructing semantics. It is called a theory of
declarative computation model or simply DP [3].

2.1 Specialization System

DP can construct theories independently of partic-
ular target objects. If a set of all target objects and
a set of operators for them are given, DP can judge
the correctness of computations. To do this, DP
needs a four-tople (4, G,S,u) that is defined by
Definition 1.

Definition 1 (Specialization System)

A,G,S are sets. u:S — partial_map(A)! is a
Junction.  The four-pair (A, G,S,u) holding the
Jollowing conditions is called a specialization sys-
tem.

(1) Vsi,52,35€ 81 p(s) = p(s)) o p(s2)?
(2) 3seS,YaeA: u(s)(a)=a
3) gcAa

Each element in A is called an atomic object
or simply object. Each element in G is called
a ground object. FEach element in S is called a
specialization. The specialization shown in (2) is
called a unit specialization. (]

Users of DP must construct the specialization
system for target objects. They then can apply the-
ories of DP to their computations.

2.2 Program and Declarative Semantics

Definition 2 (Declarative Program)
Let T be a specialization system (A4, G,S,u). A
declarative program on T is defined below.

(1) A definite clause on T is a formula that
has a form as H <By,---,B, (0 < n), where H,
By, --,B, € A. H is called the head of the definite
clause. The sequence By, --,B, is called the body
of the definite clause.

(2)A declarative program on I is a set of some
definite clauses on T. ]

"partial_map(X) is a set of all partial maps on X.
2u(s))ou(s2) is a combination function of u(s, ) and u(s; ).

In the rest of this paper, we call a definite clause
simply a clause and call a declarative program sim-
ply a program. P(T) stands for a set of all pro-
grams on a specialization system T".

Definition 3 (Some Notations) Given a special-
ization system T’ = (4, G, S, ).

(1) For a clause C on T, head(C) stands for the
head of C and body(C) stands for a set of all ob-
Jjects appearing in the body of C.

(2) For P € P(T"), Gclause(P) stands for a set
of all ground instances of clauses in P. Here, a
ground instance of a clause H < By, ---, B, is
a clause H' « B\, ---, Bl,, where 30 € S, H' =
H®, By = B\6, ---, B, = B,0. Note that we call
an operation that makes a ground instance from a
clause groundizing of the clause. (]

Definition 4 (Declarative Semantics)

Given a specialization systemT" = (4, G, S,u). For
P € P(T'), the declarative semantics of P is de-
noted as M (P) and defined as

where Tp is a function defined as

Tp:2G 520,
Tp(x) =
{head(C) | body(C) C x,C € Gclause(P)},
n times

To"(x) = Tp(Tp (- (Tp(x)))) -
0

This is our declarative semantics. It has some re-
semblance to the semantics described by Lloyd [8].
However, our semantics is different from it at least
in two points. One: ours does not depend on partic-
ular target objects, but Lloyd’s depends on terms.
Two: to compute the declarative semantics of a
given program, Lloyd’s definition of the declara-
tive semantics must use logical consequences |=.
This means that it fixes the method of computa-
tions to resolutions based on unifications. Our
M(P) does not fix the method of computations.
All computations constructed with elements in S
are allowed.
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3 The Language

This section provides formal definitions of our tar-
get language. Intuitive meanings of the language
are described in [7].

3.1 Objects-4, G

A set C is given. Each element of C is called a con-
stant. The set C has a relation over it, denoted as
—», and the following two conditions are assumed
to hold.

Condition 1: For Va € C, any sequence
x1,-,xn € € (0 < n) must not satisfy
a—x;— - —=x,—~a. In the case of n =0,
this condition forbids a— a. ]

Condition 2: For Va € C and Vx,y € C, if both
x—a and y— a hold, then x = y holds. ]

Definition 5 (Descendant Relation for C)

For a,b € C and the relation —over C, a is the
descendant of b and is denoted as b 5 a, iff one of
following conditions holds:

(1) a=b, or
(2) there exists some constants
Xy, %, € Csit.
b=xj—= - —=x,=a(l1<n<e)

[

The above two conditions are mutually exclusive.
By Condition 1, if the condition (2) holds, then a #
b.

Proposition 1 ForVa,be C, a SHbandbSa=
a=>h. U

Definition 6 (Class) A class is a sequence of zero
or more constants. The length of a class is the num-
ber of constants constructing the class. C*stands
for a set of all classes. ]

Definition 7 (Descendant Relation for C*)

Similar to the case of C, for two classes ¢ =
(c1,-++,cm) and d = (dy,--+,dn) (0 < myn), c is
the descendant of d and is denoted as d > c, iff the
following conditions holds:

n<m, and
d,'—*)C,' (i=1,---,n).

Another set V is given. Each element of V is
called a variable. The set V is a disjoint of C, i.e.,
CNV =6.

Definition 8 (Class Object)
A class object is a pair (a, c), where oo € V and
c € C*. C stands for a set of all class objects. [ ]

Definition 9 (Atomic Object) Let 4 be a set such
that:

5‘1={(X,x, (ala"'aan))|
XeV,xe(,
ay, - ,a, € AUC,0 < n < e}

Each element in A is called an atomic object (or
simply an object). The class of the class object x
is also called the class of the atomic object. Each
a;(i = 1,---,n) is called the subobject of the ob-
ject, and the sequence (ay,---,a,) is called the
substructure of the object. Note that atomic ob-
Jjects always have a substructure. Even in the case
of n =0, it has a null sequence of subobjects, i.e.,
(), as its substructure. 0]

The variable of a class object is sometimes
called a class variable, and the variable of an ob-
ject is sometimes called an object variable, when
variables need to be distinguished. Let V. be a set
of all class variables, and ¥, be a set of all ob-
ject variables. V., V, C ¥ holds, and it is assumed
here that V. NV, = ¢.

For an object a € AU C, the set of all variables
appearing in a is denoted by V(a).

Definition 10 (Ground Object) An atomic object
a € A holding V(a) = ¢ is called a ground object.
G stands for a set of all ground objects. (]

3.2 Operations — S, u

This section describes operators to operate objects.
Operations are called specializations. Some spe-
cializations have a direction.

3.21 MGCD

Definition 11 (MGCD) For two classes s,t € C*,
a class u € C* that satisfies the following condi-
tions is called the most general common descen-
dant (MGCD) of s and t, and such u is denoted as
Y(s, t):
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s> u,t >~ u, and
forvu' e Cr s=u't=u' =u>u'.

The MGCD of two classes does not always exist. If
it does not exist, it is denoted as Y (s, t) = L. For
any class s, Y(s, L) and Y( L, s) are not defined.

[

Proposition 2 If the MGCD of two classes is not

L, it is unique. U]
For two classes s = (sj,---,s,) and t =
(t1,-+,tx) (0 < n < m), let us consider the follow-

ing algorithm.
Algorithm 1

1. Foreachi=1,---,n,

o ifs; 5 1;, then assign u; :=t;.
. * .

o ift; = s;, then assign u; 1= s;.

o otherwise assign u = 1, and exit this
algorithm.

2. Assign u;:=s; foreachi=n+1,---,m.

3. Assignu = (uy, -, ity).

]

In the following propositions, we use the same
notations as those used in Algorithm 1.

Proposition 3 Ifu# L, then u=Y(s, t). (]

Proposition 4 [f the MGCD of s and t is not L,
then Algorithm I always derives it. ]

Propositions 3 and 4 ensure that the MGCD of
two classes is not L, iff Algorithm 1 derives it.

3.2.2 Specialization

To operate atomic objects or class objects, there
are four basic operators. Suppose a target object is
z € AU C and a basic operator is 8, the application
of 8 to z is denoted as z[6)].

Definition 12 (Basic Operator) (1) For X,Y €
V,, the operator X =Y exchanges all X appear-
ing in the object with 'Y .

alX%Y)=a, ifaeC,
<Z7 Xy (a’)>[Xﬁ’Y]

= (Za X, (a[Xﬁ’Y]ﬁ))a
(X, x, (a,- )X ZY]

=(Y,x, (a[X ZY],--)).

(2) For a,B € VY, the operator a.=p exchanges
all o appearing in the object with p.

(v 8)[e=B] = (v, 9),
(0 9o B] = (B, 5,
(X,X, (av))[oci’B] i )
= X’x[a_L’B]’ (a[a—L’B]a))

(3) For .. € V. and t € C*, the operator o>t ex-
changes the class of all class objects specified by
the variable o. appearing in the object with t.

This operator has a required condition: there
must be a descendant relation between the source
class and the destination class. For example, when
(o, s)[at] is performed, Y(s,t) # L must hold.

(%, s)lowt] = (v, ),
(, s)[on1] = (a, Y(s, 1)),
<X: X, (aa o ‘)>[G,Dl]
= (X, x[o>1], (alont],---)).

(4) For X €V, and b € AUC, the operator X b
adds b in the tail part of substructure of the target
atomic object whose variable is X.

a[X ++b] = a, ifa € C,
(Ya X, (ala"'aan»[X%b]

=(Y,x, (a][X-B)b],--~,a,,[X4>>b])),
<X7xa (al)"’)all))[x-a)b] =

=(X,x, (a1, - ,a,,b))

[

When the operator is applied to atomic objects, the
required condition is effective for subobjects recur-
sively. If a basic operator holds the condition, then
it is said to be applicable to the object. If the class
variable of an operator and the class variable of a
target class object are different, then the operator is
also said to be applicable to the object, but it does
not have any effect.

As shown in Definition 12, for a basic operator
B, if z € A4 then £[6] € 4, otherwise, if z € C then
z[6] € C.

Definition 13 (Specialization Operator)

The specialization operator (or simply specializa-
tion) is a sequence of zero or more basic operators.
S stands for a set of all specialization operators. A
null sequence [] is called the unit specialization
operator (or simply unit specialization).
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[Concatenation] A concatenation operation of two
specializations 8 = [0y, ---, 8,,] and 6 = oy, -+,
G,) (0 < m,n) is denoted as 0-6 and the result is
defined as '

6-0= [[91,--',9,,1,01,---,0,,]].

[Applicability] When a specialization 0 is applied
to an object a, all basic operators in 8 must be ap-
plicable to a. In this case, 0 is said to be applicable
to a.

[Application] The application of an applicable
specialization © to an object a is denoted as
u(8)(a) or simply a® and the result is defined as

{ al] =a,
a[[elaeb to aem]] = (a[el])u:eh e aem]] .
S stands for a set of all specializations. ]

For specializing clausess, specialization oper-
ators are extended. Suppose that C = (H «+
By,---,B,) is a clause and 8 is a specialization op-
erator that is applicable to all objects H,B,-- -, B,,
then the application of 8 to C is denoted as u(8)(C)
or CO and is defined as

CO = (H,0<B0,--,B,0) .

4 Discussion

4.1 Specialization System

We describe that the specialization system con-
structed in Section 3 holds the required condition
defined by Definition 1.

As to the condition (1), forV0;,0, € Sandae 4

(u(81) o u(62))(a)

u(01)(1(62)(a))
u(61)(aby)
(a61)62
a(0,-67)

= u(6:-62)(a).

Thus, the condition (1) holds with s = 0,-0, € S.
As to the condition (2), the unit specialization
[ ] is the desired operator.

As to the condition (3), Definition 10 implies
that G C 4.

Therefore, we succeeded to constructed the spe-
cialization system for our target language. This
implies that we succeeded to construct declarative
semantics for the language.

4.2 Related Work

Lloyd [8] has constructed declarative semantics for
logic programming languages with terms. Terms
can express many kinds of knowledges or data.
However, as to some complex objects, such as
classes or substructures, expressing them by terms
is not the best way. For more efficient or direct
method to express class hierarchies, LOGIN [2] (or
its descendant LIFE [1]) has introduced ¢—terms.
For substructures, A Prolog [9] has combined the
first order logic and the A calculus. LOGIN and
A Prolog have succeeded to construct their theo-
ries. However, we can not see the relationship be-
tween the two theories.

As described in Section 2, DP provides a general
way to construct semantics for many programming
languages. We succeeded to construct declarative
semantics for a language with classes and substruc-
tures in this paper. If we succeed to construct theo-
ries for other kind of programming languages, then
we can see them with a unified viewpoint, i.e.., DP.
This is the main value of this paper. Indeed, we
have succeeded for programming languages with
terms, multi-set, and constraints [4, 6, 5].

5 Conclusion

We succeeded to construct declarative semantics
on DP for our target language that deals with
classes and substructures, by constructing the spe-
cialization system.
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Appendix
Proof of Proposition 1.

Suppose a # b. By Definition 5, a = b implies that
there exists some constants x,---,x,, € C (0 < m)

such that a = x; — --- = x,, = b. Similarly, b 5 a
implies that b=y, —--- >y, =a (0 <n). We
then have a sequence a = x| — -+ =9 x, =b=
y1 = --- =y,y = a. This contradicts Condition 1.
Therefore, a = b must hold. (]

Proof of Proposition 2.

For s,z € C*, assume that u = Y(s, ) and v =
Y(s, t) (u,v# L). Both u>v and v>u hold by
Definition 11. The length of u and the length of v
are equal by Definition 7. Suppose that the length

of u (and v) is n, then we have u = (), ,u,),v=
(vi,---,v,) and both u; = v; and v; = u; for each
i =1,---,n. By Proposition 1, u; = v; for each
i=1,--- n Thus, u=v. []

Proof of Proposition 3.
[Most general]
Suppose that for some v = (v|,---,v) € C*, both

s>vand t>v hold. s>v implies m < k. By the
definition of >, s; = v; and #; — v; for each i =
1,--,m. If s; > t; then w; = t; = v;. Alternatively,
if t; = s; then u; = s; > v;. Therefore, in both cases,
u> v holds.

[Common]

The length of the class u is m. The length of s is
equal to m, and the length of ¢, i.e., n, is less than
or equal to m. Foreachi=1,---,n, if s; 5 t; then
u; = t;, and this implies that s; = u; and #; - u;. Al-
ternatively if ; — s;, then u; = s;, and this implies
that ¢; 5 u; and s; 5 u;. Thus, in any case, ¢ > u.
Foreachi=n+1,---,m, we have s; 5 u;, since
u; = s;. Thus, s> u. []

Proof of Proposition 4.
Letv=(v;,---,v) be Y(s,2) # L (m,n <k).

(1) Assume Algorithm 1 succeeds and derives
u# 1. Wehave u=v=7Y(s, t) by Proposition 2
and 3.

(2) Assume Algorithm 1 derives L. This im-
plies that neither s; 5 t; nor ¢; 5 s; for some val-
ues of i. v =Y(s, t) implies that s; = v; and t; - v;
for all i = 1,---,n. There are four possible cases
according to Definition 5:

1. s; =v; and t; = v;; this implies that s; 5 t; and
t; —*) S;.

2. s,~=s} — - =s¢ =v; (1 <a) and t; = v;; this
implies s; 51

3. s;=v,~andt,~=t}—)~~——)tf’zv,-(lgb);this
implies ¢; —*>s,~.
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4. s;=s'> . ot =viandt; =t} > o1}
= v; (1 < a,b); we have s¢ =%, and by Con-
dition 2, ¢! =471, . s =P ifa < b.
This implies ¢; 2 5;. Otherwise, if b < a, then
we have sf‘_b = t;. This implies s; 51

In all four cases, either s; - or 2 s; holds.

This contradicts the assumption. Therefore, Algo-

rithm 1 always succeeds, if Y(s, #) # L. ]






