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Abstract

This article is self-study for foreign students in our college. The content is preliminary

illustration about complex numbers and complex functions with one variable

1 Complex numbers

Complex number « is defined by a + b, where
a and b are real numbers and ¢ is a number such
that i2 = —1'. The numbers @ and b are called the
real part and the imaginary part of the complex
number, respectively. Each term is designated as
a = Ra or b = Sa. The complex number a = b is
called a pure imaginary. The zero of the complex
number is zeros of real and imaginary parts of the
complex number; (a =a+ib=0— a=b=0).

The complex number of a + b corresponds to a
point in the plain, which has a rectangular Carte-
sian coordinate system, while the real number a
corresponds to a point on the line (z-axis):

A pair of real numbers (a,b) can also be inter-
pretted as two dimensional vector. Thus, we can
use both the vector and a point representation of a
complex number in the following.

The absolute value of @ = a + tb is the length of

vector Oa = 7, which is denoted as
|ad|=r=la+ib| = Va? + b2

The operations of addition, subtraction, multi-
plication and division of complex numbers are de-
fined in terms of the corresponding ones for real
numbers, where o = a+1band § = c+1d (a,b,¢c,d

are real numbers);

addition a+ 8= (a+1b)+ (c+1id)

. . . ™ i .4
1The operation of i means the rotation of 3 1SS

=1

* BiEdx R ITER

=(a+c)+i(b+d)
subtraction « — 8 = (a +1b) — (¢ +1d)
=(a—c)+i(b—d)

where |a—/3| means the distance between two points
a and .
muptiplication af = (a+ 1b)(c + id)
= (ac — bd) + i(bc + ad)
ca = c(a+1ib) = ca+ich (when 3 =c)
division % - E:I:gg _lact b‘g:’éfc ad)

[Example 1] Show expressions of the above op-

erations of complex numbers by a pair of real num-

bers.
[Solution.]
at+f=(a+ecb+d), a—F=(a—cb-d)

o ac+bd be — ad

aff = (ac —bd, be + ad), E = (m, m)
The complex number a — ib is called the con-
jugate of a + ib, where we denote the conjugate
complex number as @ = a + tb. These complex
numbers differ only in the signs of their imaginary
parts. Since the imaginary part of a complex num-
ber is the y-coordinate in the plain, two conjugate

complex numbers are the images each other in the

X-axis.
The addition and subtraction of « and @& give
ata= ?a . Solving these equations for a and
oa—a=12b
b, we have
a=Ra =" +a (1)
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a—a

2 )

b=SCa=
From these formulas,
@=a <= aisareal number (3)
@ =-—a <= «isa pure imaginary (4)
The product of @ and @ is |a|?;
a@ = (a + ib)(a + ib) = (a 4 ib)(a — ib)
=a®+ b =la> — |a|=Vaa

[Problem.] Verify the following formuras.

Wa+B=a+B(2a-f=a-8

(3)@-:53(4)(;“?)%

A differrent form of complex numbers is trigono-

metric one, which is

o=z +iy =r(cosf+isinf) = re?

where 6 is called the argument denoted as 8§ =
Arg a. This coordinate system (r,6) is called a
polar one. It is convinient to call r and 6 radius
vector and vectorial angle of the point « in the

rectangular Cartesian coordinate system:

{m:cosG {r:vm2+y2
—

y =rsinf

With the use of the argument we may rewrite the

above statements (3) and (4) as

o is areal number <= Arg@=0orn

@ =-—a <= «isa pure imaginary
T 3w
& Argf0= - or —
V=g

[Example 2] Calculate the product and division
of two complex numbers « and § with the use of
trigonometric forms and show them in the plain.

[Solution] as @ = r(cos@ + isinf) and § =

r'(cos @' +isinf’)

aff =rr'(cos8 + isinf)(cos @’ + isinf’)

=rr'{cos(§ + 0') + isin(6 + 6')}

where Arg a3 = Arg a+ Arg B =60+4¢'.
r(cos@ + ¢sinf)

= = ;—{cos(e —8') +isin(6 — 8

a
B r'(cos ' +isind’)
where Arg %— =Arga—ArgB=60-§6.

[Example 3] Solve the following equation (roots
of the powers).

2" = a (n is any integer)

[Solution.] Putting z = Re'® and o = re* into
the above equation, we write

R"ein® — reif
Then, we obtain

R*=r

cos(n®) = cosf, sin(nO) =sinb
Therefore,

n® =6+ 2knr — @=9+2k7r

(0<k<n-1)

The solution is
1
z= r; (cose+2k7r +isin9+2k7r>
n n

For the equation z™ = 1, the solution for z are

2kr .. 2kmw

1,21,29,++,2n—1 where z = cos — + isin —
n

(power roots of 1).
Let us consider a different form of the complex

number by matrix:

(7

and the unit matrices of real and imaginary parts

are

(o0) (03

where E-E=E?=E, which is called unit matrix and
I I=1?> = —E. With the use of these units, a is

written as

10 0 -1
=aE + bl = b
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(0 0)+(03)-(5 )

The operations by matrices are satisfied with the

four ones of complex numbers;

er=(17)(0 )
[ axc —(bxd)
"\ btd atec

(50 7)

( ac—bd —bc—ad

) =(axc)E+ (bxd)

bc+ad ac—bd

a1 1 a -b c d
=af "c2+d2<b a)(—d c

1 ac+bd —bc+ ad
2+d?\ bc—ad ac+bd

| R

= —CE—_}_—E{(GC + bd)E + (bc — ad)I}
(¢ +d° #0)
Here ! = 2—_{1_-32- Cd is the inverse ma-
c - c

trix of 8. ( The definition of the inverse matrix £ is
B8 =BTIB=E) &+ & =

-d ¢
determinant of the matrix 4. When ¢ +d? =

04=>c=d=0,(g g)iscalledthezeroma-

is called

trix.
The product of a(= a+ib = re'®) and z(= z+iy)
is az = 2 = 2’ +4y’. This may be rewritten as the

transformation between vectors; (z,y) = (z/,y’).

()G 2)0)
<o) ()

) = (ac — bd)E + (bc + ad)I

This transformation is a rotation through angle
Arg 6 conbined with a uniform expansion (r > 1)
or contraction (0 < r < 1).

[Problem 1] Show that a condition such that
three points «, § and « is on the line may be written
:Z = k (k is real).

[Problem 2] Show that a condition such that
each segments of lines Ba and ~& are perpendicular

% ik (kisa
-

in the form;

may be written in the form;
pure imaginary).

[Problem 3] Show that
8-« 3 B —ao

A Ao~ = =
afy < Aa'By e A —a

and that

Aafy is equilateral triangle
2, 02, A2 =
= “+ Y —af-By—va=0

[Problem 4] Show that a condition such that
four points e, 3,y and ¢ is on a circle or on the same

. . . -y [Ja—§
line may be written in the form; bl =

a —
B—~/ B-4

k (k is real).
[Problem 5] Verify the following statements:

(1) The equation of a line is
az + @z + ¢ = 0(c is real)

(2) The equation of a line such that two points

a and f are on the line is
z = czy + (1 — ¢)za(c is real)
(3) The equation of a circle is
2zZz+az+az+c=0 (aa—c>0)

(4) the equation of a circle such that two points

z; and z; are terminal points of diameter on the
21 — ic2zg

circle is z = —.
1—1c
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2 Differentiation of complex func-

tions

2.1 Limit, Derivative and Holomor-
phic

Let D and B be two sets of complex numbers in
the complex plane such that one number z in D
corresponds to each number w in B and each num-
ber in D corresponds to at least one number in D.
This correpondence defines a function, symbolically

shown as
fiz—w or w= f(2)

Sets D and B of complex numbers are called ‘do-
main’ and ‘range’, respectively.
The limit of a complex function is expressed like
that of real functions
:H->Hzlo f(z)=a or f(z) —a (z— z)
which represents that the limit of the function f(z)

is a when z tends to zg.

[Example]
. 1 1
. zgrlr}i-if(z) =15 when f(z) = Z
. 1
. zll)rlr_le(z) =1 when f(z) = P

The limit of 11_1}1}) -i: is not still defined. Introducing

the infinity oo in the complex plane formally, we

write lim 1 = oo. Further, we can write lim - =
z2—0 2 z=300 2

0.

The complex plane attached with the infinite co
is called the extended complex plane. However, in
this study the extended complex plane is used as
the complex plane, simply as z-plane?.

A function f(z) is continuous at z = 2, if zl_i_’rrzlo f(2)
f(20) (20 € D) and a function f(z) is continuous

in D if f(z) is continuous at all points in D.

2Properties of operations including the infinity are (cis
a constant)

Jo

=0 c+0o=
=0 CxXO00 =0

0108

co 0
Operations as oo + 00,0 * 00, —, o are not defined.
&)

[Example]

e f(z) = z is continuous at all points in the

z-plane.

1, . .
¢ f(z) = - is continuous at all points except for
z = O in the z-plane. The particular point z =
0 in this case is called the isolated singular

one or the singurality.

The term, holomorphic or regurality of complex
function, is related with differentiability of complex
function. Consider a function f’(z), which is called
the derivative of f(z). We define f/(z) as usual

Fley = EE) _ gy A1)

dz Az0 Az
= lim f(zo+ Az) — f(z0) - lim f(z) = f(20)

Az 0 Az 19z z— 29

which exists and is independent of the every path
in which Az — 0 or z = 25. This strict condition
of differentiability of complex function is essential
as compared with that of real function.

Let us consider and discuss differentiability of
complex function by using simple functions, which
are f(z) = z and f(z) = Z.

According to the definition of the derivative, we

have
(z+82)~z _{(z+Az)—2} +i{(y+ Ay) — 4}
Az Az + 1Ay
_ Az +iAy
T Az +idy

Therefore f(z) = z is said to be differentiable at
any point in z-plane.
On the other hand, for f(z) = 7 = z — iy it
follows that
(c+82)—: _{z+Ax)—a}—ify+Ay) —y)

Az Az + 1Ay

_ Az —iAy

T Az +iAy
In this case, the limit depends on the path. For
example, take Ay = mAz (m = const.), as path,
then we get

Az —iAy Az —imAz

Az +iAy Az +imAz
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_l—im
T 14im

The limit is dependent on m. Hence, f(z) = %
A differentiable function is

called holomorphic or regular function. Thus, holo-

is not differentiable.

morphic or regularity of complex function is said to
be continuous and defferentiable at any point in the
z-plane.

Now let us investigate the differentiable condition
of complex function.

Let f(z) = u(z,y) + w(z,y). By the definition
of the derivative of f(z), we have

b Af lim Au(z,y) +iAv(z,y)

a0 Az Az >0 Az + 1Ay
{ Ay —0

=a+10

where a and 3 to be determined as follows are the
real part and imaginary one of the derivative f'(z),

respectively. From these equations, we get
Au(z,y) +iAv(z,y) = (a +iB)(Ac +iAy)
= (aAz — BAyY) +i(BAz + aly)

From these, we can determine « and (. First, in
the case of Az = Az it follows that
Au  du . Av  Ov

im —=—=u,, llm ——=—=u,
az—0 Az ox ’

azs0 Az Oz
Consequently, we write

ou v
oy q_Ou . Ov _ .
f(z)—a+zﬂ-a$+zax Ug + 1V, (5)
Next in the case of Az = 1Ay, it follows that
v . Ou

f’(z):a-{-iﬂ:a—y—za—y:vy—iuy (6)

From the equations (5) and (6), we obtain
Ou ov

9z = dy (uzzvy) (7)
0 0
3 = "os (w=-w) ()

This relation is called Cauchy-Riemann’s equations
and we denote these as C-R for simplisity. From C-
R, we obtain

8% B%*u v %

3_13-‘_—3—3/_2:0 and 527+a—y3=0 (9)

where the functions u(z,y) and v(z, y) is called har-
monic functions. Introducing the differential oper-
ot 9

02" " By
can write these equations

ator A = which is called Laplacian, we

Au=Av=0 (10)

These equations are (two dimensional) Laplace equa-
tion or potential equation in math-physical science.
([Example 1] Express the form of C-R by the
polar coordinate system (r,6).
[Solution] Putting = + iy = re'® and then dz =
dre'® + iret?df, we have

ou 10v Bu ov

=i - o
For u + iv = Re®®,

rOR 00 10R 80

Ror o8 Ro0- o
[Example 2] Verify that —aé =0 < % = 0.
[So{u_i}:.ign] Let z =z _zj- iy and Z = z — 1y, then

T = Here z and 7 are for-

5 5 ¥ =
i
mally treated independently though they are really

)

dependent.
O 0z 1 0y Oy 1
8z 9z 208z 07 %
o, _mo mo _1(0_ 0
8z 77 0z0x  0z0y 2\0z ZBy
9 _ . 90 o 1(0 .0
& 67‘555+620y‘2(am“6y>

By substututing f(z) = u(z,y)+iv(z,y) and f(z) =
u(z,y)—1v(z,y) into the above expressions, respec-
tively and then equalify, we get the required results:

of _1(0 .0 .

% = 3 (5;-“5&) (u +1v)
= Sl — vy + iy + 02}

of 1[0 .0 ,

'a—z = 5(5;—1-@) (u——zv)

- .;:{(u, +vy) +i(—uy + v5)}

These results show that if a function f(z, %) is holo-
morphic, it depends on only z: 8sf = 0. If a func-
tion f(z) is holomorphic, the derivative of f(2) is

of _df
Oz =0.f= dz’
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[Example 3] Prove that Af =0 <= e 0
[Solution] By using the proceding results, it fol-
lows that

20 1(2 i 2)1(24:2)
020z 2\ 0z Z@y 2\ 0z zay

LARYT A ATER

020z 4\ 0x%  Oy? 4
It should be noted that this statement does not
hold for n-variables.

[Example 4] Verify that a function f(z) is a
constant if |f(z)| = const..

[Solution] Let f(z) = u(z,y) + iv(z,y) and
|£(2)] = Vu? + 02, then u? +v? = 2, (¢ = const.).
Differntiating both members of u? + v? = ¢? by «
(‘or y), we get

uuy +ovvy, = 0

C-R

Uty +vv, = VU —uv, =0

. . . v
The coefficients of u, and v, is not zero since

—-u v
u? +v? # 0. Then, u; = v; = 0. In a simi-
lar manner, u, = vy = 0. From these, we obtain
f(z) = const.

2.2 Comformal mapping

The differential coefficient of a differentiable real
function which represents a curve C has the mean-
ing of the tangent of that curve C. Here we shall
investigate a geometrical meaning of the derivative
of complex function.

From the definition of the derivative of complex

function f(z), we may write
flz+h) = f(2) h(f'(z) + A(R))
flz+ k) - f(2) k(f'(z) + B(k))

where A(h) and B(k) — 0 when h — 0 and
k — 0, respectively.

By taking the ratio of the above equations, it
follows that
fz+h) = £(z) _h f'(z) + A(h)
f(z+k) = f(z) Kk f'(z) + B(k)

Equating arguments of both members of the above
equations, we have

f(z) + A(h))

=60+ A —

om0+ ars (G5

where
re+am 1630 e
f'(2) + B(k) f'(2)

and therefore

F(2) + A()
Arg (f’(Z) +B(k)) 0

Consequently we get the required result: ¢ = 6.

The function or the mapping, f : 2z = w or
w = f(z) with angle-preserving is called ‘comfor-
mal mapping’. In other words, the mapping de-
fined by a holomorphic function f(z) is comformal
except at points where f'(z) =0

Let us illustrate an important and interesting ex-
ample of comformal mapping. Let

_az+f

w=flz) = 2%

(ad—py =

* 2oy

w is called a linear-fractional function or customar-

ily a linear function. This mapping is comformal if
fi(z) = o8 =fy #0
(vz +6)?
It is convinient to understand the mapping of
the linear fractional function that we may divide

the equation (11) into the following parts

a ab-py 1 Cs
=2_ — =+
v oL, 8 TG
0
(Cl =E,02=_9—(§—_2£7'7C3 =§‘)
i Y Y

This mapping is a composite of the following four
mapping

1
z—(l—))z-l-Caﬁ)z

where basic mappings which are denoted as (1), (2)

and (3) represent shifting or translation, inversion
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and similarity or rotation, respectively. Of course,
each basic mapping is comformal.

The forms of the matrices which correspond these
basic mappings are given by

1 a 0 1
o) s (22)
a 0
(3)—><01)

where a is some constant.

To understand the meaning of linear mapping of

. . . z z
linear fractional functions, let z = 2 be !
22 29

W1

The mappings or
ws

andletw:e-l-be (

w2z
transformations of the points between z and w are

defined by

()-(20)(2)

which is equivalent to the equation (11). By multi-
plying matrices which correspond to the composite

of basic mappings described in (2.2), it follows that

DG
-(27)

[Problem] The cross ratio of four points z;, 23, 23
and z4 which are ordered, is defined as
Z) — 23
2y — 24 _ (21 — 23)(22 — 24)
29 — 23 (21 ""24)(22 —23)
Z9 — 24

Verify that

(21— 28)(22 — 24) _ (w1 — ws)(w2 —ws)
(21 - 24)(22 - 23) (wl - w4)(w2 —ws)

where w; = f(z;), 1 =1,2,3,4.

2.3 Elementary holomorphic functions

Let a function f(z) be holomorphic and let f/(z) #
0. If an equation w = f(z) can be solved for z
as a function of w and this solution is written as
z = g(w), the function g(z), where g(w) and g(2)
really indicate the same function although the vari-
ables differ, is called an inverse function of f(z)
and is denoted as g(z) = f~!(z). The derivative of
F1(z) exists if |f(2)] # 0:

dg(z) _df~'(z) _ 1

dz2 ~  dz (13)

#(w)
do

A function f(z) is called biholomorphic when both
functions f(z) and f~!(z) are holomorphic.

As an example, the inverse function of f(z) =
az+

vz 446

exists since f'(z) # 0 and its expression is

bw—p

— £-1 —
w—z=f (w)_-—'yw+a

(14)

Consider the function defined by w = e?, which
is called exponential function of z. The properties
of the function e* are in the following:

¢ (1) Law of exponent e*11%2 = ¢*1e?2

e (2) Periodicity e® = e*t2"" (n is any inte-
ger)

e (3) Derivative de” _ (e*) = ¢€*

dz

The above equation w = e* may be solved for z
to give z = logw. Therefore, the inverse function
of e is log z, which is called logarithmic function.
According to the definition (13), the derivative of
log z is
dlog z 1

dz de” T ew

dw

Putting z = re*(6+277) into log z, we have

W |-

w = log z = log re'(®+2n™

= logr + (6 + 2nn)



8 LN S

EMERKEEEIN T

which means that the logarithmic function is an
infinite-valued one. However, if n fixes, the map-
ping f : 2 = w becomes one to one correspon-
dense. Each is called branch. In like manner, writ-

ing z = z + iy we have
w = log 2z = log(z + 1y)
= %log(;c2 +yi) +i (tan"] % + 2mr)
([Example 1] Find the following logarithm.
(1) log(~1)* (2) 2log(~1)
[Solution.] From the above formula of the log-

arithm,

2nmw = 971

log(~1)? = logl =loge
2log(~1) = 2loge'™?"™ = o(ir 4 onn)
= 2+4n)7
This result shows log(—1)? # 2log(—1). In general,
log z1 29 # log z; + log 2.

Trigonometric and hyperbolic functions are writen

by exponential functions;

eiz + e—iz . ez'z = e—iz
0§z = ——————  §inz = ———
2 21
z -2 z -2
e +e . e*—e
coshz = sinhz = —

The some properties of trigonometric anf hyper-

bolic functions are in the following:

trigonometric function

addition sin(z;1 + z2) = sin z; cos z;
theorem + sin z5 cos 2y
cos(z; + z2) = cos z; cos z;
— sin 29 sin 29
derivative  (cosz)' = —sinz
squares sin? z 4 cos?z =1

periodicity 27
Zeros nr for sinz (n is any integer)

2nw + —g for cosz

hyperbolic function

addition sinh(z; 4+ z2) = sinh z) cosh z,
theorem + sinh z3 cosh 2z,
cosh(z; + z2) = cosh z; cosh z,
+ sinh 2, sinh 2z,
derivative  (sinhz)’ = coshz
(coshz)’ = sinh 2
squares sinh? z — cosh? z = 1

periodicity 2n

Z€eros in7 for sinhz

) (2n7r + g) for coshz

We wish to indicate relations among some elemen-

tary functions in the following:

Trigonometric function +— Exponential functior

(hyperbolic function)

g g

Inverse trigonometric function — Logarithmic functio:

(Inverse hyperbolic function)
[Problem 1] Solve the equations for z.
(1) cosz=1 (2) sinz=2 (3) tanz =1
[Problem 2] Show the following formulas.
(1) cos(iz) = cosh(z) (2) sin(iz) = isinh(z)
(3) tan(iz) =1itanh(z) (4) cosh(iz) = cosz
(6) sinh(iz) =isinz (6) tanh(iz) = —itanz
[Problem 8] Show the following formulas.

-1
(1) cos™'z= l.log(z ++/1-22) dcodsz A

! L Vv1-22
1 dsin™" 2 1
o1, 1 " — _
(2) sin~':z z,]og(z +1/1 - 22) "~ 1 L
-1 _i 1+:z2 dtan‘z__ 1
@) tan™ = gplos " 1tz
(4) cosh™ z = log(z £ V72 — 1) —“-"Z}l——" == zzl_ 1
o
(5) sinh™!'z =log(z £ V22 +1) dsinh™'z 1
dZ L Z2+1
-, 1 1+2 dtanh‘z__ 1
(6) tenh z_—210g1—z dz )

Let us show some examples of the mappings of

elementary functions:
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(Example 2] Find the mappings of the following
functions and draw graphs of them.
(1)¢.a=z(2)w::§(3)u.:=ez (4) w = cos z

[Solution]
(1) Let 2z and w be z + 1y and u(z,y) + 1v(z,y),
respectively. Rewriting the equation w = z gives

u +1v = = + 1y. Then, we obtain

2 u+iv= rr——l—l_z—ﬁ By similar method in (1),

we have
u z u
= —_—— = ——:
22 + 42 2 2
3 _yy and { —u_-i;v
v—$2+y2 y w2t o2

u 1\* 1)’
a=u2+v2 — (u—}-%) +v =<§;)
b TV uz+<v_i)2=(i)2

u? + v? 2b 2b
(3) u+1v = *t¥ = e*(cos y + 1 siny)

u=e®cosy
v=e"siny

whenz=a —u?+0?=(e?)?=¢
wheny=b — v=utanb

(4) cosz = %(e‘z +e7%)

u+ 1w = coszcoshy —isinzsinhy

u=coszcoshy, v = —sinzsinhy
mhene=a — (20) - () =1
mheny=b = (5) + () =

[Problem 4] Find the mappings of the following
functions and draw graphs of them.

Nw=2z+ -i— (2)w=logz (3) w=sinz

3 Integrals of complex functions

3.1 Line intergals and Cauchy’s in-
tegral theorem

We shall first define line integral, denoted as / f(z)dz,
c

of a complex function f(z) in the z-plane. [ ---dz

represents the integral along a curve C. NC;)w di-
vide C into n portions in the range [zo,zn), where
zo and z, are terminal points, e.g. starting-point
and end-point, respectively. The curve C here has
no crossing and then is called a simple conncted
one. Let (; be between each portion, z;_; and z;.

we consider a sum

n

DGz — i) = Y F(G) Az
=1

=1
g fc f(z)dz (1)

The curve C is called the path of integration. In
a particular case, when C is closed, it is called a

contour integral and its notation of integral along
Cis }[ -+-dz, or simply f---dz.

Thecvalue of integral (1) depends on the form of
f(z), and not on the particular way of dividing the

range into n portions. Then we may write
Zn
[ #@dz = [ fleyde = Flen) ~ Flao
20

where F(z) is indenifite integral of f(z); dF(z) =

dz
f(z).
Next, we shall make real forms of / f(2)dz, where
C
f(2) = u(z,y) +iv(z,y).

/ f(2)dz = / (u(,y) + iv(e,y))(do + idy)
C C

= /C (udz — vdy) + /C (udy + vdz) (2)

Let the equation with the parameter ¢ of the curve

C be

z(t) = () + iy(¢)
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and then

[oser = [ sension

When f(z) = 1, then

/dt/\/ )

which is the length of the curve C.

Let us show and discuss some properties of line

integrals:
(1) Liniality

/C (af(z)+bol=)ds = a [ fla)dets /C o(2)d=(3)
(2) Distribution low

/ fe)dz= [ e [ e @)
C14C> Cch Co

) Inverse element

/ f(e)dz = — /C f(2)dz (5)

(4) Cauchy’s integral theorem

f £z (6)

where f(z) has no singular points inside C.

(5) Extension of Cauchy’s integral theorem
f(z)dz = f f(2)dz 7
# 1) > f A ™)

where f denote integrals taken counter-clockwise
c

along the circles C;.
(1), (2) and (3) are obvious. About (4), let f(z)
be holomorphic in a domain D and then from (2),

[ s
-//(%Jf%)d”y
o f [ (55 ) o=

f(z)dz = 0, then it can be said f(2)

is holpmorphic (Morera’s theorem).

= / (udz — vdy) +i/ (udy + vdx)
C C

Reversely, if }{

Let rewrite in a manner by differential form. It

is more convienient to understand it.

¢ = f(z)dz = (u + iv)(dz + idy) = ¢1 +i¢y
where
¢1 = udzr —vdy, ¢» = vdz + udy

Then, it follows that

dp = dé1+1do,
_ //(8v 6u) dedy
(S

where dzdzr — dydy = 0 and dzdy = —dydz. Ac-
cording to the C-R relation, d¢ has to be zero, that
is, d¢ = 0. Hence, we have

/Cf(z)dz=/c¢=/;)d¢>=0

On the other hand, we use f(z,Z) instead of f(z)

47 = Loz + Yz

/f dz—/dfdz_/ “Ldzdz =R o

where dzdz = dzdz = 0. Then, we get again

/Cf(z)dz =

This is the desired result. It is obvious that

/Cf(z)dz - é/c f(2)dz =

Therefore we obtain (5).

3.2 Cauchy’s integral formula and Tay-
lor series

Let o be any point inside C in a domain of z-
plane. Assuming that a function f(z) is holomor-

phic at any point inside C, we now consider a func-
f(z)

z—a
except the point z = a. Such a point is call the

tion , which is holomorphic on and inside C

isolated singular one.
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We can write

i(i)—dz = —]i(-.f—)—d

cZ—aQ cr 2

(8)

where C' is a circle with a center a inside C.

Replacing z — a by re, then dz = ire?®, we
P g Y

obtain
@, - [T &‘J’_Z“ol iret?df
cZ—a 0 ret
= 1 02“ fla+re®)dd
¢ i2rf(a)
Therefore,
flay= = [ L8y 9)

2m Joz—a
This formula shows that the value of the function
f(@) at 2 = « is represented by the line intergal
along the coutour C.
If the point a inside C is arbitrary, the derivative
of f(z) at the point z = & can be written

f'(a) - ‘L(fozi)zdz
P = [ L

G—op

f(z
f(")(a) — /; G _(a))n+1dz
These show that if a function f(z) has a first derivate
with respect to the complex variable at any point
inside C, it has derivates of all orders at any point
inside C, in other words, a function f(z) has suc-

cessive differentiations.

3.2.1 Taylor’s series

Using above notations, we can expand a function

f(z) at any point z = « inside C into power series

fz) = 3 an(z—a)

n=0

= aqt+az—a)+az—a)’+---

where

an =

fP(e) _ 1 J e

n! 2m Jo (€ —a)"H

Let C' be a circle with a center o inside C and
z is inside it. When |( —a| > |z —a| (( € C'), it
follows that

“(-a; z-¢

_ 1 1+z—a+(z—a)2+(ﬂ)3+...
T (-a (—a (-« (—a

-

n=0

Put this result into the above series, we have
1 = (z—a)”
fz) = 2ﬂi,;Lf(C)mmd§

= Yale-a) (10)

n=0
1 f(9)

= — | ——2 4 11
n 2w /C (¢ = a)nt? ¢ (11)
This formula is call Taylor’s series. A function f(z),
which can be expanded into power series, is called
an analytic function.

(Example 1] Taylor series is written in the form

of the polar coordinate z — a = re'®

f(Z) Zan(rew)n Za re ind

n=0 n=0

2T

where a, = — fa+re®)e™"df. Prove the

0
following Perseval’s equality

o [ifatrePa =Y et (1)
n=0
[Solution]
1 r2r o 27
o /. |fla+re’| d9—-—7r- A ffde
R o~
=5 A mz_;oam(z —a)™ r;)an(z — a)"df
2r 1o n=0 0
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which gives the required result.

[Example 2] Verify that a function f(z) is con-
stant when f(z) is holomorphic and |f(z)| has max-
imum in domain D.

[Solution] f(z) has the ma.xir&um M= fla)(z€

D) and can be expanded into Z an(z — a)" near
n=0
z = a. It follows that the square expansion coeffi-

cients are

oo
lao* + ) lam[*r®™ < M? = |ag|?
n=0
since ap = f(a) = M. Hence the coefficients must
be zero. Then we get |f(z)| = ap=const..
[Example 3] Verify that a function f(z) is con-
stant if f(z) is holomorphic and bounded in the
z-plane (Liouville’s theorem).
[Solution] Take |f(z)| < M, which is the max-
imum of f(z), since f(z) is bounded. It follows
that

27
—21;/0 fla +re®)e™0dg

lan| =

M M 5
< T=— —0
2rrh rr

o

Then we obtain f(z) = ag = const.. A holomor-
phic and bounded function f(z) is called “entire
function”.

[Example 4] If an algebraic equation f(z) =
@p2" 4 an—12""1 4+ .- + g is not a constant, then
f(z) = 0, for at least one solution of z (“Funda-
mental theorem of algebra” by Gauss).

[Solution] Assuming that f(z) # 0 for all z, we

make a function ¢g(z) = ——, which is an entire

function discribed above. It follows that

Jim o(e) = lim 775 =0 dine, i /(2) =

According to Liouville’s theorem, f(z) must be a
constant. However, this conclusion is in contradic-
tion with the assumption. Hence, It is concuded
that the algebraic equation has always at least one

solution.

3.3 Laurent series and Residue

Taylor’s expansion of a function f(z) cannot be
applied where f(z) has singular points. Let C; and
C, be two concentric circles with a center. Assum-
ing that a function f(z) is holomorphic in the an-
nulus between C; and Cj, we can expand f(z) into
Laurent’s series, which will be shown as follows:

Let C’ be in the annulus between C; and C,.

Now consider a function

flo) = o [ L)y

2rt Joir ( — 2

According to the theorem (

Jom Jr h /, /C, J.

Hence, we rewrite

fo) = = [ L& L [ f&,,

2m1 Je, C—2 2m Je, C—-z
() + (1)

Here, the expansion of (I) is the same as Taylor
series described above. Now consider the expansion
of (II), where |( — a| < |z — a|. This enequaity is

inverse in the case of expansion of (I), Taylor series.

The expansion of is by a prevoiusly similar
-z

expansion
I 1 -1 1
(—z (-a)-(:-a) z-a;_C-a
z—a
2 3
2 () () )
z—a z—a z—a z—a
R SN () s
-_nz___% (z—a)”

1 = -3 [ 708

2mi ~ Jo (z—a)m
= - Z bn'(z_l—a)n (13)

b = o / FOC-ayac ()
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Then, it follows that R iz
/ = / —dz
= +ID =3 anlz —a)t = S by *
z) = + = an(z —a)™ - B R —iz R —iz
n=0 n= (Z - a)n / = / / dzr = “"/ ¢ dz
CcD Dc -r r T

where
Then, we get

1 & f({)
aﬁffé/(c_—)‘nﬁd" {735
Mo [t ftfot

2,”2/1"« (¢ — a)"de 22/ o
0

n=1 ——dz —ir =0

Instead of the above expressions we may simply
Therefore, we reached the required result.
o0

write ;)2
0o (Example 4] Prove that ?{ e (T = /7
fe)= Y an(z-a) w - =
n::z—-oo and that / e~ cos 2czdr = Ve ¢
0
a, = 1 f(9) d¢ @) [Solution] Consider f e"zdz, where a contour
n ; _ o)+l C
2mi Jo ((—a) is taken around the boundary of the rectangle ABCD.
which is called Laurent series. According to Cauchy’s integral theorem,
[Example 2] Find the values of
oLt hot Lot [
2ri (n=-1) ¢ JaB Jec Jecp Jpa
?( (2 —20)"dz =
c 0 (n# —1) where
where n is any integer and a contour C is the circle / and i o
with the radius r and the center z = 2. AB ¢b
[Solution.] If n > 0, we obtain f(z—zo)"dz =0 R
~z2 R—o0
accoding to Cauchy’s intergal theorem. When n < /D y = / R e dz = Jm
0, replacing z — zo by re'?, and then dz = ir?d, R+ic
/ = -—/ = —/ _(z+ic)2d$
T ret® 2mi =-1 BC cB Reic
j{(z —20)"dz = / Lt.:g—de = mi (n ) *
o (reif)m 0 (n#-1) { R — oo -
c—0 / —(I+ic)2dx
_.+ —-—
This is the required results. oo ¢
sinz m
[Example 3] Prove that /0 — de = 5 Consequently, we have
[Solution] Consider f £_dz, where a contour / = e~E+i? _ /m
c <
is taken around the boundary of semi ring-shaped i
region in upper z-plane as shown in Fig.(). Accord- Comparing between real parts of both members in
ing to Cauchy’s integral theorem, the above equation, we obtain
f:/ +/ +/ +/ =0 / e cos2czdz = /re™°
¢ Ja Jpc Jep Jba 0
where ®
[Example 5] Prove that / C?S clde = 1 g—

R—» -0 . —oo Sin
/ 3°0 and /A =5 i it
AB DA
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[Solution.] Consider e“zzdz, where a con-

c
tour is taken around the boundary of the cone-
shaped region OAB. According to Cauchy’s inte-
gral theorem,

3o fout fa e

where

R—oo
/A O
AB

Jou -
o

/R _"d:ch‘;Qﬁ
2

0
R
/ e e4dr
0
142 R
)

/ cosr —zsmr2)d

I

From the equation

/ =0, we obtain the

required result.

3.3.1 Classification of Singularities

The negative expansion of Laurent series

Zb e

n=1
near z = a. Usmg this term, we may classify sin-

n is called the principal part of f(z)

gular points as follows:

(I) when there is no negative power series in Lau-
rent series, the point z = « ia called a removable
singular one.

(II) when n = k (finite series), the point z = a is
called a pole and k represents the order of the pole.

(III) when n = oo

a is called an essential singular one.

(infinite series), the point z =

[Example 1] Expand the following functions into
Laurent series with the point z = 0 and Consider
about classification of singular points.

1 sin z sin 2z

(1)sin~(2) (3)=

[Solution]

1 1 11 il
z oz 31z BlZS

z = 0 is the essential singular point since the prin-

cipal part is infinite.

z z 3! 5!
1o, 14
=1—-3—!z +5—'2 -

= 0 is the removable singular point since the

series has no principal part.

i 1
(3) S]I';Z=_(2_lzs+lzs_'”)

z 2?2 3! 5!
1 1 1,
-—;—§!'Z+§Z -

z =0 is the first order of pole or is called a simple
pole.

3.3.2 Residue theorem

By integrating both members in (A), we get

/Cf(z)d2=an /(z——a"dz

_ 2mia_; (n = -1) (15)
0 (n#-1)

Here, the expansion coefficient a_; of the principal

part is called residue at z = a. The residue of a

function f(2) is denoted by Res[f(z),a], or simply

Res[a].

1= g Reslf(2),0] = / fl)dz  (16)

This statement can be expanded for many singular

.) of f(z) inside C;

/C flz)dz=2miy a_y =2mi Y Res[f(2),an](17)
n=1

27rz

points ; (1=1,2,..

which is called residue theorem.
The residue of f(z) with a simple pole is given
by
a-1 = lim (2 — ) f(2) (18)
and with the k-th order of a pole by

1 , d(k—l)
o o [

(FREU134E11 20 H 3 38)

a.y =

a)*f(2)] (19)



