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Transmission of acoustic energy in finite-size layered structures
expressed by the effective acoustic impedance
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An effective acoustic impedance is defined for a finite-size layered structure.

With this effective

acoustic impedance, the transmission and the reflection of acoustic waves are expressed concisely. The
frequencies of transmission enhancement are derived with the total number of layers in the layered
structure, which include the resonant transmission frequencies. On the transmission enhancement
conditions, the impedance at a surface of the layered structure coincide with the effective impedance.
With considering energy fluxes, we relate surface vibrational magnitude closely to the impedance.
Further, the effective acoustic impedance gives low energy flux at the transmission enhancement

frequencies.

1 Introduction

In a previous study [1], the definition of effective
acoustic impedance (EAI) is proposed. Further,
the enhancement is shown is shown numerically
for the transmission of acoustic waves. For this
enhancement, the EAI of a layered structure (LS)
must coincide with the acoustic impedance of lig-
uid which is in contact with the LS.

In this paper, the EAI is defined with com-
plex effective reflection coefficient (complex ERC)
of the LS. Further, transmission rate and the re-
flection rate are expressed concisely with the EAI,
even if the impedance matching is not established.
When the impedance matching is set up, trans-
mission rate becomes unity which is its maximum
value. Resonant transmissions reported previously
[1, 2] can be explained with this EAI matching.

To define the EAI we need to treat complex re-
flection coeflicients. Magnitudes of these complex
coeflicients have already been measured by exper-
iments at solid-liquid interfaces with frequencies
between 100 and 300 GHz. [3] In this study, the
complex coefficients are assumed to originate from
the loss in liquid. [4] Meanwhile, we need to con-
sider complex coefficients in liquid and in solid
if acoustic waves are travelling to directions both
positive and negative.

The surface modes in Al/Ag superlattices have
been studied experimentally with frequencies in
the range from 110 to 670 GHz. [5] These results
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have also been compared with the predictions of a
transfer-matrix theory of the localized modes. In
this theory, they discuss the amplitude reflection
coefficient at the surface and the dispersion rela-
tion which gives the frequency of a possible surface
mode. However, more precise investigation shows
that another condition is required. This condition
relates the total number of layers in the finite-size
LS closely to the surface mode frequencies. Fur-
ther, the dispersion relation of surface modes is
not realistic for the finite-size LS, if we neglect
losses of acoustic energy in the LS system.

Recently, the low thermal conductance in LS
has been discussed. [6, 7, 8] The conductance is
reduced by a factor 10 compared to bulk semi-
conductors at room temperature. We show that
this low thermal conductance is related to the low
surface acoustic impedance which coincides with
the EAT at the transmission enhancement frequen-
cies. To derive this feature, we should be careful
of stresses on the LS surface which cannot be re-
moved, if we consider the finite-size LS in station-
ary states with monochromatic frequencies.

For the definition of the EAI, we consider lig-
uid in contact with the LS. However, we do not
have to persist in liquid. Materials in contact are
allowed to be in any phases. To show this fea-
ture, we discuss acoustic waves at solid-solid in-
terface and at solid-liquid interface (or solid-fluid
interface) in the section 2. As a result, the lig-
uid is treated as a working material to define the
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EAL The transmission and the reflection of acous-
tic waves in the LS are discussed in the section 3
with their numerical examples. We show that the
surface vibration and energy fluxes are expressed
with the EAI in the section 4. Further, we discuss
energy flux incident from the liquid into the LS in
the section 5. After these sections, related topics
are discussed in the section 6. We conclude in the
section 7. Fundamental concept is explained in
appendices.

2 Interfaces

We discuss reflection coefficients and transmission
coefficients at interfaces in this section. Relations
of these coefficients are expressed in the same form
at interfaces both of solid-solid and of solid-liquid.
We use vectors and matrices defined in appendices
A.1and B.1. In the following discussions, the vec-
tors ¥,4(z) and ¥ () are translated from the vec-
tor Ug(x) defined in Eq. (52) for solid A and /3,
respectively, instead of solid S. The vector ¥ (z)
is defined for liquid in Eq. (71).

2.1 Solid-solid interface

If we assume that solid A is in a region x < 0 and
solid B is in the other region = > 0, the condition
for the continuity of displacement and stress is ex-
pressed with the vectors as ¥ 4(—0) = ¥(40). [9]
Its explicit expression with matrix elements is

ap _ 1 g+ 24 Zp— 7 QA
bp 27p | Zp—Za Zp+Za || ba |’
(1)

Quantities a,y and b4 are displacement amplitudes.
and 7 4 is acoustic impedance of the solid A. Quan-
tities ap, bp and Zp are those for the solid B. We
consider a case that the acoustic wave propagates
from £ = —oco to £ = 0 in the solid 4 and it is
reflected at the interface (z = 0) with the solid 53
by an amplitude reflection coefficient x4p5. Fur-
ther, we assume that there is only transmitted
wave with an amplitude transmission coefficient
Tap in the solid /3. In this case, we can put that
bs = Kap a4, ap = Tap aa, and by = 0. Substi-
tuting these amplitudes in Eq. (1), we obtain the
well-known coefficient expression with the acous-
tic impedances as

1-Zp/Za

- - - 2
L+ 7Zp/74° @

KAB =

. —_—
1+ Zp/Za

These expressions are derived for a solid-solid in-
terface. However, we see that the same expres-
sions are given for a solid-liquid interface in the
section 2.2.

Tap =1+ kKap =

2.2 Solid-liquid interface

When a solid and a liquid are faced at = = 0,
the continuity of solid displacement velocity and
stress in the solid with acoustic field velocity and
pressure in the liquid is expressed as ¥g(—0) =
U, (4+0). [10] Its explicit expression with the ma-
trix elements is

ar, | _ —w/ky | Zs+ 21, —(Zs—Z1) as
b, 271, | Zs— 74, —(Zs+ Z1) bg
4

Quantities ag and bg are the displacement ampli-
tudes, and Zg is the acoustic impedance of solid
S. Quantities a, and by, are amplitudes of velocity
potential, and 7j, is acoustic impedance of the lig-
uid L. From Eq. (4), we obtain a relation between
&L, =bp/ar, and kK = bg/ag as follows

e _Zs=21)-(Zs+Z1)k 5)
T s 2~ (s - Zu)k
The quantity « is an amplitude reflection coeffi-
cient in the solid S in contact with the liquid L.
and ¢, is that in the liquid. In general cases, the
amplitudes have complex values. Therefore, the
values of k and ¢, also become complex in Eq. (5).
In a case that the reflected waves do not exist
in the liquid, i.e., b;, = 0 and &, = 0, the quantity
K is given as

_1-7,/Zs
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In this case, x must be real. because both Z; and

Zg are real. We define an amplitude transmis-

sion coeflicient as a ratio of ‘velocity’ like 7 =

(ik;, ap,)/(—iw ag). Using elements in Eq. (4).
we obtain

(6)

" (SL)
T:(2A11,> ey ]: r2 7~ =14k,
—iw/) (fOD)y — 1+ 7p/Zg
()

and this value is also real. These coefficients, &
and 7, are identical to those of solids A-/3 dis-
cussed in the section 2.1, if we substitute the solid
S for the solid A and the liquid L for the solid 5.
Therefore, we do not have to worry about material
phases in contact with a LS in the section 3.

|
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Figure 1: An example of layered structure
and liquid system. The space coordinate
is z and has its origin at interface between
the layered structure the liquid. The lay-
ered structure is in a region z < 0, and
the liquid is in the other region z > 0. In
the present paper, existence of the bottom
of liquid bath is not considered, so that
reflected waves from the bottom are ne-
glected.

3 Layered structure with liquid

3.1 Transmission and reflection

We discuss a system that a LS in contact with
liquid as in Fig. 1. The LS is assumed to have a
spatial period of unit bilayer AB and to have N
bilayers. The LS extends in a region z < 0, and
ends at z = 0. Its substrate is assume as the same
solid as B. We assume that the contacted mate-
rial with the LS is only a liquid L in the following
discussions, because the expressions of amplitude
reflection and transmission coefficients in the lig-
uid have no differences from those in solid.

In the system B(AB)n-L defined above, a re-
lation of amplitudes in the solid B’s between ad-
jacent the n-th and the (n+1)-th bilayers becomes

an+1 Qn,
=G ,
[ bn+1 } [ bn :|

where G is defined by Eq. (56). With iterations,
we get a relation of amplitudes in the N-th layer
and those in the substrate 0 as follows

{ a1\7 } - G"’\v { (lo } ‘
K ay bo

where ag and by are amplitudes in the substrate
0, and ay is a amplitude in solid B of the N-th

(8)

9)

bilayer which is the end of the LS. The quantity
& is an amplitude reflection coefficient in the solid
B faced with the liquid for the case of energy in-
cidence from the LS substrate. It has well-known
expression as follows

1-Z71)Zp

— 1= 24L/%8 1
R 7y (10)

Because the acoustic impedances Zy and Z;, are
real, the reflection coefficient x must be real. After
some calculations, we obtain the following expres-
sions for the elements of the matrix GV.

(GM)11 = cosh N¢ + is(()gla, B), (11)
(¥ = ie¥s(Q) £(Za/ 75— 25/ 24)simoy
(12)
(GN)ag = (GN)3, (GN)gy = (GN)%,, where a =
kg da, 8 =kp dg, and these are real. (Accurate
definitions of these quantities in the above expres-
sions are given in appendix A.1.) Further,

1
g(a, 3) = cosasin /3+§(ZA/ZB+ZB/ZA) sin a cos f3,

(13)
cosh( = cosacos,(f—%(ZA/ZB+ZB/ZA)sinasinﬂ,
(14)
sinh? ¢ = (% /71— Z/Za)sin o — g¥(e ),
(15)
sinh N{
s(¢Q) = W (16)

By a feature of the matrix G*V, we have cosh ¢ =
3tr[G). The right hand side of Eq. (14) defines
the value ¢ . If cosh( > 1, then ( is real. If
cosh( < —1, then { is complex number with a
form of { = im x (odd integer) + (real). If —1 <
cosh( < 1, then ( is pure imaginary. The function
s(¢) depends also on N, and it gives real values
for any values of (.

With the above expressions, the amplitude re-
flection coefficient » = bg/ag in the substrate 0 is
given as

,— K (GN)“ — ((;N)m
(GN)gg — K (GN)19”

(17)

Because (GV)g1 = (GV)%y and (GN)11 = (G5
are always true, Eq. (17) is reduced as follows

00 K— K
,:eﬂ() C*
1-k K}

= s FlRe 1 g

7
/K5 — K’
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where © = arg [ (GV )], and we define (Thig) quantity K corresponds to reflection coeffi-

Ke = ((;‘\')2]/((:'\')11 or explicitly with the
matrix elements as follows

—ie™ N Za)Zp — Zp)%4) S(C) sina
cosh NC + 1 s(¢) g(a, B) ’ (19)

We call k. as a complex effective reflection coef-
ficient (complex ERC). This quantity is defined
without considering the liquid in contact with the
LS. Therefore. k. is characteristic to the LS. Re-
flection rate in the substrate is 2 = |r|2. We get
transmission rate as I' = 1 — 2, because of the
conservation of energy. From the expression of r
in Eq. (18). we can recognize that &, is a keystone
to master the reflection and the transmission of
acoustic waves in the LS.

When materials are lossless for the acoustic
energy both in the LS and in the liquid, and the
reflected waves from the bottom of liquid bath are
neglectable; we have to require a condition that
K is real as is defined in Eq. (10). (cf. appendix
B.2.) In general cases, k. is complex number. To
vanish 7. we need that the real quantity x should
coincide with k.. For this coincidence, a condi-
tion of Im[r,] = 0 is also required and it gives the
following relation

Ke =

cosh N¢

s(C)

This equality defines the relation between N and
w. (Dependency of w is in the quantities a, 8,
and (.) Denoting the values of @ and 3 with a
subscript ¢ on this condition, we express the real
value of k. by k. and its expression is as follows

=tanf g(a, 3). (20)

—3(Za/Z1 ~ Zp/Z4) sina, cosB,

Ke =
¢ ,(](Ge,,ﬁc)

(21)
We call . an ERC without using ‘complex’ or
‘real.” The quantity k. does not depend on M.
For the condition Im[k.]=0. we also obtain k. = 0
at frequencies which is derived from s(¢) sin« =
0. However. this case is the same as an usual
impedance mismatch theory using the bulk acous-
tic impedance 7. Therefore, we do not discuss
this case in detail. [When N=1 and Im[k.]=0, the
condition in Eq. (20) is reduced to Eq. (64), and
k. in Eq. (21) is reduced to Eq. (65).] When the
condition of Im(x.]=0 is satisfied, we get R = K?
where

K — K¢

K=——".
1 -k ke

(22)

cient without the phase factor. When a condition
of k = Kk, is satisfied simultaneously with the con-
dition of Im(k.]=0, we get /2 = 0. Therefore, the
transmission rate 7' is enhanced and becomes its
maximum value, ie., 7' = 1. For this enhance-
ment, we also require that |x.| < 1, because « has
to satisfy an inequality |x| < 1.
We define the EAI like

, 1=k, _ (Zi/Zp)tana, + tan 3,
Z(: = AR = 4B . )
1+ ke (Zp/Z4)tan o, + tan 3,
(23)
then the expression of K is reduced as
1-7./7
_ l// € (24)

B 1+ZI//Ze‘

When we compare this expression of K with the
transmission coefficient x in Eq. (10). we notice
that the impedance Zp of the solid /3 is substi-
tuted by Z.. This feature shows a validity of the
EAI which plays a role of characteristic impedance
of the LS. Further, it is interesting that the num-
ber N is not explicitly included in the expression
of Eq. (23). This means that the unit bilayer has
the same expression of 7, as well as that of a semi-
infinite LS on the condition Im[x.]=0.

3.2 Numerical examples

We show numerical examples for a system with LS
consistent of Cu and Ag. The solid A is Cu and
the solid /3 is Ag. The substrate of the system is
Ag. Thicknesses of the metals are the same, i.e.,
d1=0.50 mm and d 3=0.50 mm. Parameters of the
metals are assumed as follows: For Cu, density is
8.93 g ecm™3, sound velocity is 5.01 km s~!, then
the acoustic impedance /4 becomes 44.7x10° kg
m~2s~!. For Ag, density is 10.5 g ecm™%, sound ve-
locity is 3.65 km s~ !, then the acoustic impedance
Zp becomes 38.3x10% kg m~2 s~!. In Fig. 2.
the complex ERCs. «,’s, are shown as a spiral for
the layered structure Ag(CuAg)y. where the to-
tal number of bilayers is set as N=11. The figure
has three axes which are for frequencies, for real
parts of k.’s. and for imaginary parts of x.’s. At
many discrete frequencies. the imaginary parts of
Kc’s vanish. At these points, the condition given in
Eq. (20) is satisfied and it gives the ERCs or ,’s.
Two points labeled ‘1’ and *2° are these instances
to be discussed, and their frequencies are f;=2.085
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Frequency (MHz)

Figure 2: The complex effective reflec-
tion coefficients for a layered structure
of Ag(CuAg)i;. The effective acoustic
impedances are defined at discrete frequen-
cies on a condition that Im[x.]=0. Fre-
quencies [1=2.085 MHz and f,=4.295 MHz
are examples which satisfy the condition as
marked in the figure. On the condition of
s(¢) sina=0, the spiral line of x, passes on
the straight line labeled ‘<, = 0.’

MHz and f5=4.295 MHz. respectively. The val-
ues of k.’s at these two frequencies are k.1 =0.926
and x.2=0.550; and the EAIls are Z.;=1.48 and
Ze=11.1 in unit of 106 kg m~2 s~!, respectively.
These values are smaller than those of Zp and
Z . Their ratios to Zp are Z. /7 ~ 1/26 and
Ze/Zp ~1/3.4.

When the layered structure Ag(CuAg)q; is in
contact with water, we have transmission rate en-
hancement as in Fig. 3. Parameters of the water
are 1.00 g cm™! for density, and 1.48 km s~! for
sound velocity. The acoustic impedance is then
1.48x10% kg m~2 s~!. This value coincide with
Z¢1. Therefore, we find a maximum peak at the
frequency f1=2.085 MHz as labeled ‘1’ in Fig. 3.
At frequency fy,=4.295 MHz, Z¢y has a mismatch
with the impedance of water, so that the trans-
mission peak is not enhanced extremely and its
peak value is 0.42.

When we substitute a material X for the wa-
ter in contact with the structure Ag(CuAg);; at
frequency f1=2.085 MHz, the transmission rate
changes as is shown in Fig. 4. The material X
is expressed by the acoustic impedance Z;. This
curve is given by 7= 1— K? and Eq. (24), and is
plotted against impedance ratios Z,/Zp on a log
scale. On a point labeled ‘1,” the material X gives

Transmission Rate T
N

0 1 23 4 5
Frequency (MHz)

Figure 3: The frequency dependency
of transmission rates of acoustic waves
through the interface Ag(CuAg);;-water.

the same reflection coefficient ) in Ag(CuAg)i,
and the transmission rate becomes its maximum
value. For the sake of comparison, a curve for the
interface B3-X is displayed. where the bulk solid B
is Ag.

At the frequency fo=4.295 MHz, we plot a sim-
ilar curve in Fig. 5. On a point labeled ‘2.’ the sys-
tem is the same as that of the point ‘2’ in Fig. 3.
On a point label ‘3’ in Fig. 5, the transmission rate
has its maximum value. This means that the ma-
terial X gives the reflection coefficient £¢5=0.550
in Ag(CuAg)11, or X has the same impedance as
Zea of Ag(Culg)ps.

When the material X is fixed to have impedance
/9, the transmission rate has a frequency depen-
dency as in Fig. 6. At frequency fo=4.295 MHz,
the transmission rate has the maximum value on
a point labeled ‘3’. However, we get a lower peak
at frequency f1=2.085 MHz on a point labeled
‘4’. This lower peak originates from the large mis-
match between the impedance of the material X
and Z,; of Ag(CuAg)i;. This is in contrast with
the situation corresponding to the point labeled
‘1’ in Fig. 3.

To see the N dependency, we plot the trans-
mission rate for Ag(CuAg) y-water at the frequency
f1=2.085 MHz in Fig. 7. One maximum peak is
at N=11 which means that the system is on the
condition Im(k.|=0 [or Eq. (20) is satisfied]. We
also plot the transmission rate for Ag(CuAg)x-X
at the frequency f0=4.295 MHz in Fig. 8 when
the acoustic impedance of X is fixed as the same
value as Zge=11.1 x10% kg m~2 s~!. Several peaks
appear, which also mean that systems are on the
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Figure 4: The transmission rates of acous-
tic waves through Ag(CuAg),;-X at fre-
quency f;=2.085 MHz. The material X is
expressed by acoustic impedance 7;. The
impedance ratio to Zj is on a log scale. For
the sake of comparison, a curve for the in-
terface Ag-X is displayed. (The solid /3 is
Ag.)

conditions that Eq. (20) is satisfied. In these cases,
the maximum peaks appears at N=11. 52, 93 with
a period of 41. This dependency stems from Eq. (20)
The values of (s are im — 0.146 and (y
¢0.0765 at the frequencies f; and fs. respectively.
The condition in Eq. (20) is modified as

sinh ¢

tanh N = ——— |
anh V¢ tan /3 g(a, 3)

When we fix the frequency, then ¢, o, and 3 are
also fixed. Therefore, the condition Eq. (20) with
(1 does not have periodicity at the frequency /.
The condition with (3 has a periodicity 7/|¢y|=41
at the frequency f;. On the point labeled ‘1’ in
Fig. 7 and the point labeled ‘3’ in Fig. 8, both
numbers of bilayers are the same as 11 which makes
the transmission rates be the maximum value.

4 Surface vibrations

4.1 Complex impedance in solid

We define the complex impedance in the solid as
Z(x) = —o(z) /i), where () = —iwu(x); u(z)
and () are the displacement and the stress de-
fined by Egs. (50) and (51), respectively. With the
same method to define the complex impedance in
the liquid (appendix B.2), we derive the following

v Ls Bulk solid B
206
<
$§
8
Eos
[7]
c
g
[
0.2
. ,
107 10 10° 10° 10'
Impedance ratio Z /Z
L8
Figure 5: The transmission rates of acous-

tic waves through Ag(CuAg);-X at fre-
quency (9=4.295 MHz. The material X
is expressed by acoustic impedance 7.
Impedance ratio with Zg is on a log scale.
For the sake of comparison, a curve for the
interface Ag-X is also displayed. (The solid
B is Ag.)
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Figure 6: The frequency dependency

of transmission rates of acoustic waves
through the interface Ag(CuAg),;-X. The
acoustic impedance of X is fixed as the same
as Zg=11.1 x10% kg m~2 s,
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Figure 8: The dependency on N in trans-
mission rates of acoustic waves through
the interface Ag(CuAg)y-X. The acoustic
impedance of X is fixed as Z.=11.1 x10°
kgm?s7L,

two expressions

Z(¢) —iZgtan kgt

20)=2s 7 = iZ(0) tan kg?’

(25)

1— k e-i2kse
Z(x) =Zg m,
where Zg is the acoustic impedance of solid, and
kg is the wave number of acoustic waves in the
solid. The first expression, Eq. (25), is the relation
of impedances at points separated by a distance ¢.
In the second expression, Eq. (26), the quantity x
is the ratio of amplitudes and its value is complex
in general cases.

When we apply the above expressions to the
solid B at the LS surface in contact with the lig-
uid, the complex impedance at the interface (z =

(26)

0) becomes Z(0) = Zg (1 - k)/(1 + k). Further,
on the conditions of Im[k.]=0 and x = &, Z(0)
becomes

(27)

Therefore, the EAI is the impedance of LS surface
on the conditions of transmission enhancement for
acoustic waves transmitted from the LS substrate
into liquid.

4.2 Energy flux and surface vibrations

The time averaged energy flux in bulk solid § is

Js(e) =~ Relo(2)" )] = & |o()| fi(z)| cos(z),

(28)
where 6(z) is the phase difference between —o(z)
and 4(z). This expression can be alternatively
expressed with the complex impedance defined in
the section 4.1 as follows

1 o(z)? cos 1
2 12(@)] 2

Js(z) = |2 ()| [i(2)[? cos 6(z),

(29)
where the phase is also expressed as §(z) = arg[Z(z)].

We next discuss energy fluxes in the LS. The
flux in the substrate is expressed like

]. < D
J =3 w? Zg |ag)? (1 = |r[?). (30)
The flux in the solid B of the LS surface is
1 .
J;V = 5 wz ZB ’a‘\7|2 (]. - |/€|2). (31)

We can put Jy = Jy without any conditipns be-
cause the system is lossless. Therefore, on the con-
dition Im(x,.]=0, the ratio of amplitude a in the
LS surface solid to ag in the LS substrate becomes
2 _ (1-ke)(1+ k)

- (1 — Kk K'e)2 ) (32)

apn
ao

|t =

where we use |r| = K and Eq. (22). From this
equality, we obtain

U — Zg/Z. (k—1). (33)

This means that the amplitude at the complete
free surface is limited by a finite value. When
Im(kc] # 0, then |2 — (1 — |K|?)/|1 — Ke|? as
k — 1. [We can also derive that [t|2 — (1 —
|ke|2) /|1 + k)% as kK — —1 for fixed surface, i.e.,
Z(0) = co.]
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At the complete free surface, the impedance is
7(0) = 0. Further, in a case that Z(0) = 0 or Z(0)
is pure imaginary, the energy flux at every point
in the LS vanishes. This feature is easily derived
from Eqgs. (25) and (29).

5 [Energy incidence from liquid

We discuss the energy flow when the acoustic en-
ergy is incident from the liquid into the LS. In this
case, the amplitude ag vanishes. From Eq. (18),
this is equivalent to |1/r] = 0 or k = 1/k}. We
consider that no reflections exist in the LS sub-
strate. This means that « is always equal to 1/x.
When &7 is complex, the waves are propagating
to directions both positive and negative with re-
gard to the coordinate z in the solid B of the LS
surface. We can modify Eq. (5) as follows

rRL — K
1/¢; = —BL— Fe ;
/SL 1— TBL K;y (3-1)

where we substitute the solid B for the solid 5.
and rp;, = (1-21,/Zg)/(1+ Z1,/Zp) is the reflec-
tion coefficient at the interface (z = 0) between
the solid B and the liquid L without any reflec-
tions in it. Using this expression, we obtain the
energy flux in the liquid as follows

Jimz — 2 )

r} BL (1 — |Kcl )
|1 —rpL Kel? &5

1,
~5 kf Zg b (1—1/&,

Ib IZ (1

1 .
=—§ki

where by, is the velocity potential amplitude, and
k1 the wave number in the liquid. The quantity
1/&1, corresponds to the amplitude reflection co-
efficient when the acoustic wave is incident from
the liquid and reflected at the LS surface back
into the liquid. We can accept that rp;, < 1 and
[1/¢1] < 1. Therefore, we obtain Ji" < 0, i.e.,
the energy flows to the negative dlrectlon. From
Eq. (35), we obtain the transmission rate from the
liquid to the LS substrate as follows

(1)1 = |x[?)

Tim/ —
1—rgg ’%]2

) (36)

because the energy flux J§™ in the LS substrate is
equal to J””’ and the factor —3 k2 Zy, |by|? is the
incident energy from the hquld We can express
as T = Jinw (—% k% Zp, |br)?). The expression
in Eq. (36) is reduced to exactly the same as that

of the transmission rate T from the LS substrate
to the liquid as discussed in the section 3.1. (In
this case, rpy, is always equal to x.) Therefore,
the transmission from the liquid is also enhanced
at the same frequencies for the transmission from
the LS surface as shown in Fig. 3 for the system
discussed in the section 3.2.

The surface vibrational magnitude is expressed
as
by|? 1
% 11— |K»c|2,
where by and by are the amplitudes in the LS sur-
face and in the LS substrate, respectively. The
amplitude at the LS surface becomes greater as
|k¢) increases. If the enhancement conditions,
Im [Kc]=0 and k=1/k,, are satisfied, the displacement of
the LS surface is expressed as u(0) = bx (1 + &),
and the displacement in the substrate is by (n.b.
ag = 0). Because we are now assuming that the LS
surface and the LS substrate are of the same solid
B, the ratio of energy density deposited in the LS
surface solid to that in the substrate becomes as
follows

u(0)

bo

(37)

2

)t =27Zg/Z..

(38)

This means that the LS surface has higher energy
density than that in the substrate on the enhance-
ment conditions. Therefore, the gradient of energy
density has large magnitude, and the thermal con-
ductance is low at frequencies for the transmission
enhancement.

From Eq. (26), the impedance of the LS surface

becomes .
11—k

1+ x5
Because Z(0) = —¢(0)/1(0), we obtain the stress
on the LS surface as follows

Z(0) = —Zp (39)

1- k.
= ] 3 4
7O =w ()] Zp |25, (0)
where k. is the complex ERC and k. = 1/k*

(or K = 1/k) is related to the reflection coeffi-
cient 1/¢;, as is expressed in Eq. (34). For the
energy incidence from the liquid of the system
discussed in the section 3.2, the ratios of surface
impedances to the acoustic impedance of the LS
surface solid B, Z(0)/Zp, is shown in Fig. 9. At
the frequency f;=2.085 MHz labeled ‘1’ in the fig-
ure, |Z(0)| has the minimum value, and the ratio
Z(0)/Zp is equal to —Z,1/Zp = —1/26. At the
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Figure 9: The magnitude of impedance ratio
|Z(0)|/Zp is plotted with thick line against
frequencies. The energy is incident from
the water of the system (CuAg);;-water.
At the frequency f;=2.085 MHz labeled ‘1,’
[7(0)| has the minimum value, and the ratio
7(0)/Zp is equal to -7, /Zp = —1/26. At the
frequency fy=4.295 MHz, the ratio Z(0)/7Zp
is equal to —7,,/7; = —1/3.4 as shown la-
beled ‘2. The ratio of J{/J is also plot-
ted with thin line, which is almost the same
with the line of |Z(0)|/Zp except near the
points labeled ‘1’ and ‘2.’

frequency fo = 4.295 MHz, the ratio Z(0)/Zp is
equal to —Z.9/Zp = —1/3.4 as shown labeled ‘2.’
These values of Z(0) are not affected by the liquid
characteristics.

6 Discussion

The transmission rate is expressed as 7' = (1 —
k?%)|t|? with assuming acoustic waves incident from
the LS substrate into liquid [1]. On the condition
that the transmission rate T" has peak values, the
amplitude reflection coefficient « satisfies the fol-
lowing quadratic equation:

2 [1/ K'c|2 +1
R 1=0. 41
Rell/e] " " (4D
When Im[x.]=0, the solutions are k = k. and

k = 1/Ke. (A similar equation has been derived
previously for a different LS system. [5]) In a case
of k = K. the transmission enhancement is estab-
lished from the LS substrate into the liquid. This
case is discussed in the sections 3 and 4. In the
section 5, the other case of k = 1/k, is mainly
discussed. This case corresponds to the energy
incidence from the liquid into the LS.

6.1 Enhancement conditions

In the case of energy incidence from the LS sub-
strate, the condition that the transmission rate
becomes unity is equivalent to » = 0. This condi-
tion is expressed as kK = k.. However, we should
keep k to be real in the case that no reflections
exist in the liquid. Therefore, this condition also
requires another condition Im[x.]=0. Explicitly,

% =tan 3 g(a, 8).
[This is the same formula in Eq. (20).] If the trans-
mission rate becomes unity, the equality Im[x.| =
0 must always be satisfied. There are many cases
that r vanishes when we change the acoustic wave
frequency and the liquid acoustic impedance Zj,
(or the amplitude reflection coefficient ). How-
ever, the condition Im[x;] = 0 is not affected by
Z1. Obviously, the resonant transmission with
the surface vibrational mode [1] is one of them.
The condition Im[x.] = O expresses the relation
between the number of bilayers in the LS, the
frequency for the transmission enhancement, and
the acoustic impedances of solids in the LS. On
the condition, Im[x.] = 0 satisfied. the effective
impedance is 7, = Zp(1 — k.)/(1 + k) and the
equality Kk = K, is equivalent to 7;, = Z,. The
real value of k. and 7, are given as follows

_ —%(ZA/ZB — Zg/Z4)sinacos

(42)

o= o B W
, _ ., (Zi/Zp)tana +tan 3 ,
Ze—AB(ZB/ZA)tana+tanﬁ' (44)
[We show the same formulae of Egs. (21) and (23)
again.|

In the case of the resonant transmission with
the surface vibrational mode, the quantity { has
real part. [11] The real part of this ( causes the
increase of the displacement amplitudes from the
substrate to the interface of the finite LS in con-
tact with the liquid. If we fix the structure of
the unit bilayer in the LS, the right-hand side of
Eq. (42) depends only on the acoustic wave fre-
quency. Therefore, the variation of the number
N of bilayers in the finite LS changes the reso-
nant frequency, as well as ( and 7Z.. When we
change the number N from the value for the res-
onant transmission, the reflection rate increases
and we can expressed it as

2 :‘1_ ZI,/Ze
1+ZL/Ze

2
R=|r

(45)

69
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with making use of Eq. (24). This is a reason for
the transmission rate, " = 1 — R, to have the
N-dependence as is discussed in the section 3.2
with fixing the acoustic wave frequency as shown
in Figs. 7 and 8. From the above discussion, we
can conclude that the displacement ratio does not
increase exponentially in the finite LS, even if the
¢ has an real part. [12]

If tana = 0 in Eq. (44) simultaneously with
Eq. (42) satisfied, then Z, = Zp and the LS looks
like a bulk solid B. Similarly, if tan3 = 0 in
Eq. (44) simultaneously with Eq. (42) satisfied,
then Zy = v/Z,7Zp and the layer A plays a role
like a quarter-wave plate.

The quantities ¢"¢ and ¢S are the eigenval-
ues of the transfer matrix G defined for the unit
bilayer, and “(Z4/Zp)tana + tan3 = 07 is the
dispersion relation given by the condition that the
stress vanishes at the free surface for semi-infinite
layered media (5, 11] (not for finite-size layered
media). If the relation “(Z4/Zp)tana +tan 8 =

0” is satisfied in Eq. (44) simultaneously with Eq. (42)

satisfied, then the effective acoustic impedance be-
comes as Z, = 0. This means that the displace-
ment appears on the free surface even if the stress
vanishes. However, |t|2 — 0o for the free surface
(k — 1) from Eq. (33). The loss in the system
must be introduced for realistic considerations.
We discuss some conditions for tan a and tan 3
satisfied with Im[k.]=0. However, they are not
easy to be satisfied, because they are closely re-
lated with the unit bilayer. If we change the struc-
ture of unit bilayer, then the enhancement condi-
tions, Im(x.]=0 and k = k. are also affected.

6.2 Energy flux near the LS surface

We have also discussed the case that the energy is
incident from the liquid. In this case, the quantity
k must be always equal to 1/k}. Further, when
K, = rpL. we have Im[k.]=0 and 1/£;, = 0. [This
also means that x = 1/rp,.] On these condition,
the whole energy from the liquid penetrates into
the LS surface. Therefore, transmission is also en-
hanced from the liquid into the LS substrate, that
is the opposite diréction discussed in the section 3.
The condition Im[x.]=0 means that the enhance-
ment condition is K = 1/k.. The impedance at the
LS surface becomes Z(0) = —Z, from Eq. (26).
From Eq. (29), we obtain the energy flux at the

LS surface as follows

. 1 .
J = ~5 Ze [(0))2. (46)
[This is equivalent to J{ = %ZB w? ax]? (1—
1//{,2) = —%ZB w? [by? (1—k2).] The energy flux
in the bulk solid B is
inv 1, . 2
Jg" = ~5 7B [a(0)]°. (47)

(In a case of the LS, this expression is for the
energy flux at frequencies given by the condition

ke = 0.) When the deposit energy density. % ppl(0))? =

1pBw?u(0)[2, is the same in both systems at the
coordinate z = 0, then |(0)|? has the same value
in Egs. (46) and (47). This assumption expresses
that temperature is the same at 2 = 0 in the both
systems. Therefore, we have a relation J{ /Jiw =
Ze|ZB.

At general frequencies, the ratio above becomes

Ji | 7(0) cos 6(0)| (48)
JiB'n‘U - ZR

from Eq. (29), which is plotted also in Fig. 9 for
the same system discussed in the section 3.2. If
frequency channels are open for the thermal con-
duction by lower EAIs or by higher |x,|, then we
can expect that the thermal conductance near the
LS surfaces reduced than that of the bulk solid B
by a factor of 10 or more. The lower EAI implies
that the group velocity of the acoustic waves be-
comes slower (as in a delay line of spatial harmonic
wave tube in a field of microwave engineering).
When we cannot set . = 1 in Eq. (40), we can-
not remove the stress on the surface of the finite
LS. This means that Z(0) # 0 and the energy flux
cannot remove from the system as is discussed in
the section 4.2. [From Eq. (39), the condition that
Z(0) becomes zero or pure imaginary is derived as
kel =1]

If we could assume that the liquid plays like an
electromagnetic field, the laser light of the pump
and probe experiments [12] should give a finite
stress on the LS surface. If the LS surface is faced
to vacuum, we can assume the stress may be weak,
ie. K. ~ 1, and the surface vibrational magni-
tude may increase as expressed in Eq. (37). In
the case of Im(k.]=0, the above discussion implies
that higher values of |k¢| or lower values of 7,
are realistic, and the stress in Eq. (40) becomes
|o(0)] = w |u(0)| Z.. Therefore, the energy flux
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at the surface is reduced than that in a bulk solid.
This discussion gives us a feasibility to understand
low thermal conductance in LS’s. [6. 7] However.
we need to consider the state density of the LS
system (8] for the sake of further studies.

7 Conclusion

With making use of liquid as a working material,
we derive the EAI which is characteristic to the
finite-size LS and it is not affected by the materi-
als in contact with the LS surface. The EAI gives
concise expressions of transmission rates or reflec-
tion rates, and their frequency dependencies are
exactly the same for acoustic energy flows from the
LS substrate into liquid and from liquid into the
LS. In the case of transmission from the LS sub-
strate into liquid, the transmission rate becomes
unity on the conditions of Im[k.]=0 and xk = &,
(or Z(0) = Z, = Z1). In another case of trans-
mission from liquid into the LS, the conditions are
Im[k.]=0 and & = 1/k, (or Z(0) = -7, = -Z},).
In both these cases. the transmission is enhanced

at frequencies given by the condition Im[k,]=0. As
aresult, the EAI is defined at discrete frequencies,
and the expression of EAI does not depend explic-
itly on the total number of bilayers in the LS.

In the case that the transmission rate T' be-
comes unity for acoustic energy flows from the LS
substrate into liquid, the surface vibrational am-
plitude is limited by the ratio of Zg/Z,, even if
the LS surface is completely free. Its magnitude
grows larger as k. approaches near the value of
unity.

In the case that T = 1 for the transmission
from liquid into the LS. the ratio of deposit energy
density in the LS surface to that in the LS sub-
strate becomes Zg /7. If Z, isless than 7; at the
enhancement frequencies, the ratio becomes larger
and the thermal conductance becomes lower than
that of bulk solid or the LS with k. = 0. The LS
surface cannot be completely free. Therefore, the
stress on the LS surface is nonzero in stationary
states as discussed in this paper.

Finally, the conclusion of the present study de-
nies the possibility discussed in the previous paper
[1] that the thermal resistance decreases between
metals and liquids like helium at low temperatures
when we use finite-size layered metals instead of
bulk metals. It seems like a contradiction, because

the transmission rate becomes unity on the con-
dition of the resonant transmission (or the trans-
mission enhancement with k. ~ 1). However, the
resonant condition gives low acoustic impedance
at the LS surface which causes low thermal con-
ductance.

This work was supported in part by a Grant-
in-Aid for Scientific Research from the Ministry of
Education. Science and Culture of Japan (Grant
No. 11650062).

A Solid system

A.1 Matrix notations for solid

First, we discuss displacements and stresses caused
by the acoustic field in solids. [13, 14] Transmis-
sions and reflections of the acoustic waves are ex-
pressed with making use of matrix notations.
One dimensional equation of motion for acous-
tic waves in a solid S is reduced. with the assump-
tion that the time dependency is ¢, as follows
92 (o 2
0 “‘(2"/) SRt u(z) =0,

11

ox (49)
where w is the angular frequency of acoustic vi-
bration, and z is the space coordinate; u(x) is the
longitudinal displacement at the coordinate z, pg
is the density, and c¢j; is the stiffness constant of
solid S. A solution has a form like

, _ hh . _‘.k,f .
uw(z) = ag e T 4 hg 7S T,

(50)

where kg = w+\/ps /c11, ag and bg are displace-
ment amplitudes for travelling waves directed to
the positive direction and the negative direction
with respect to the coordinate x. The stress at «
is then expressed as

0 u(x)
ox

0.(3:) =cn ks x —ikg

—wZ S bS e

(51)

where Zg is the acoustic impedance which is de-

fined as Zg = pg vs and vg = w/kg is the sound
velocity in the solid.

If there is an interface of two solids at & =

0. then the continuity of displacement and the

stress is expressed as u(—0) = «(+0) and o(-0) =

o(+0). These relations are expressed more conve-

niently with using the following matrix notations.

()
—o(x

=iwZgage

Ug(x) = [ ) } = Mg ®s(x) Wg, (52)

T
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where we define that the displacement velocity is
a(x) = —iw u(zx), and

1 1

eiks T 0
@S(.’I:) = [ 0 ()—ik‘S z | (54)
W = [ ‘;; } : (55)

Therefore. the condition of continuity is expressed

by We(—0) = Ug(+0).

A.2 Effective acoustic impedance of bulk <I>(A)

solid

We now discuss the EAI of bulk solid. In a case
of the semi-infinite solid S with a surface at z =0
and with an acoustic wave source at x = —d, we
express amplitude vector at the surface by W(0)
whose components are ag and bg, and amplitude
vector at the source by W(—d) whose components
are age~*sd and bge*sd, Relation of these two
vectors is expressed as W(0) = $g(d) W(-d),
where ®g(d) is given by Eq. (54). The matrix
®g(d) is a transfer matrix for the semi-infinite
solid. Therefore, the complex ERC k. becomes
zero. This means Z, = Zg without any conditions.
If the solid is in contact with a material with the
impedance Zg, transmission rate becomes unity.
This is a trivial example, but shows that no con-
tradictions are caused by the EAI

A.3 Effective acoustic impedance of unit
bilayer

To discuss a LS in the section 3, we consider a
system consistent of solids A, B, and X. We de-
note a layered configuration as BABX, where the
solids are connected in an order as noted. The left
solids in BABX are at coordinates less than those
of the right solids. When we express an interface
of two solids. we use -’ between them like BAB-
X. Interfaces of the solids are assume to exit at
z =0 for BAB-X, at = —dp for BA-BX, and
at x = —dy — dp for B-ABX. Making use of the
matrices defined above, we get a relation between
displacement amplitudes at z = —d4 — dp — 0 in
the solid B and those at z = —0 in the other solid
B as W(—0) =G W(—d4 — dg — 0), where

G =3 (dp) f4B) 8V (dq) fBY,  (56)

F8 = 2713 { AN o NG
1% = [ ;A J—FZZ 2 s 2 (58)
oV(da) = [ eikgd‘q ik } (59)
o (dp) = { eikgdﬂ (:‘_iI?BdB } (60)

In these expressions, d4 and dg are thicknesses of
a solid layer A and a solid layer B, respectively.
The phase chan%es of amplitudes are expressed by

da) and &y’ (dp) for the waves to travel in
the layers. Wave numbers are denoted as k4 and
kp in the layer A and the layer B, respectively.
The matrix G is a transfer matrix which defines
the relation of displacement amplitudes separated
just by one bilayer AB. Explicit expressions for
the elements of G are given as follows

(7,4/73 + 7Zp/Z4)sina},
(61)
(62)

Gy = é {cosa +

2

Grg = e ;( ZalZB — Zp/Za)sina,

and Ggg = Gy, G21 = G}y, where a = kgdy, and
B = kpdp. Therefore, we get the complex ERC
(ke = Ga1/G11) as

i e"Q’I(ZA/ZB —7Zp/Za)sina

= 63
cosa+2(éA/ZB+ZB/ZA)sma (63)
The condition Im[x.] = 0 is given as follows
1
§(ZA/ZB+ZB/ZA)tanatan2ﬂ= 1. (64)

This condition gives frequencies which make the
transmission be enhanced. The ERC becomes

Ke

—%(ZA/ZB — Zp/Z4)tanasin2f

—3(Za/Zp — 7B/ %4)
tand W(Za)Zs + Zp/Za)

tana
and the EAI of the structure BAB is derived by

Ze = ZB(1 — K¢)/(1 4 k.). The explicit form be-
comes

(65)

(Za/Zp)tana + tan 8

Ze = (Zp/Z4)tana +tan 8’

Z5 (66)

This expression has the same form as that of the
LS with N bilayers.
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B Liquid or fluid

B.1 Matrix notations for liquid

To understand the transmission of acoustic waves
from solid into liquid, we make up the matrix no-
tations of liquid or fluid in this section. If we ne-
glect the nonlinear term and the viscosity in the
Navier-Stokes equation, a velocity potential ¢(x)
is defined with the equation of continuity, and sat-
isfies the following equation

* ()
0x?

w2
+ — ¢(z) =0, (67)
(()
where ¢, is the sound velocity in one dimensional
liquid L. [15] The time dependency is also as-
sumed as e~ ** as the same way in the discussions
of solid. This equation has a solution like

¢(x) = ar, e T 4 by, e T (68)

where k;, = w/c¢,. With this solution, we can
derive the acoustic field velocity v = 0¢/0x and
pressure deviation from its averaged value as p’ =
—py, 0¢/0L, where py, is averaged density. Their
expressions are

0 ¢(x)
o

(flk'[’ £ ik, It,

(69)

v(z) =

=1k ar, —tky, by, e”
p(z) =iwp,d(z) ‘

= qw py, ay, €5 T4iw pp by, 7L T (70)
As the same way in the discussions of solid, we
also define the following matrix notations

Vy(z) = [ ;}((‘?) } = ML ®y(c) Wy, (TD)
My, = iky, [ ZlL 22 ] ) (72)
C’ik" T 0
CI)],(.’I?) = i: 0 (f_ikl' T J ) (73)
aj, .
WL = [ [)L :| ) (74)

where Z; = pj, ¢, is acoustic impedance of the
liquid. With these matrices, we can express the
continuity of the acoustic field with that in solid.

B.2 Complex impedance of liquid

The acoustic impedance 7, is a ratio p/(z)/v(x)
in a case that waves are travelling only to one
direction, e.g., b;, = 0. Even if there are waves
travelling to the positive and negative directions
simultaneously, we define the ratio p/(z)/v(z) and
call it complex impedance Z(z). There are two
expressions for Z(x). One is given by expressions
Uy(z) = My, &,(x) Wi, and its modified form
of W, = [®(x)]"} [M]™! ¥r(x). The coor-
dinate x in these two expressions can be put in-
dependently, and Wy, is allowed to be the same
in both expressions. We put # = 0 in the for-
mer and & = / in the latter, and get ¥/ (0) =
My, [@L(0)]7H M"Y (o).
sions, this equality becomes

In explicit expres-

©(0) | coskpl — —ig-sinkpl | | v(f)
P(0) | | —iZsinkpt coshkp? p'(0)

(75)
From this expression, we get a relation of the com-
plex impedances Z(0) = p/(0)/v(0) and Z(¢) =
p'(0)/v(?) as follows

Z(0) — iZ; tan kit

Z(0) =7, 7, —iZ(0) tankl’

(76)

This is an expression that relates the complex impedances

separated by a distance £. The other expression is
given by Eqgs. (70) and (69) as

1+£l e—‘i2k1,’t
1— EL e—i2kLz’

Z(z) =7y, (77)
where ¢, = b1, /a;, and it means an amplitude re-
flection coefficient in the liquid. (We do not need
to specify that ¢, is defined at an interface nor
at a surface.) These two expressions mean that
the complex impedance Z(z) is defined by stand-
ing waves in the liquids, because they have similar
forms to the impedances of electrical transmission
lines. However, ZJ, in lossless liquid defined in this
section corresponds to the reactive impedance in
electricity. Differences of signs in Eqs. (76) and
(77) with those of electrical transmission lines are
caused by the definition of phase factor. It is
e~#hztict in electricity. When we cannot neglect
reflected waves from the bottom of liquid bath (see
Fig. 1), then &, # 0 and we have to consider the
complex impedance Z(x). The reflection coeffi-
cient « in Eq. (6) [Eq. (10)] must be substitute
with

_1-2(0)/%s

"= 1T 207 (78)
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The above reflection coefficient  has complex val-
ues in general cases. If we introduce a viscosity
in liquids [4] or we consider reflections in the lig-
uid, the complex acoustic impedance 7, = Zg(1—
ke)/(1 + k) is realistic quantity in a solid for a
discussion of acoustic wave transmissions through
a solid-liquid interface.
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