On the Semiranked Group (II)

By Toshitada Shintani*

Synopsis

In this paper we will give a definition of the Direct Product of (S) R-groups and prove several propositions,

Throughout this paper we shall use the same terminology that is introduced in [1] and [2].

§ 6. The definition of the Direct Product of (S) R-groups. Let G_{λ} ($\lambda \in \Lambda$; Λ is finite) be R-spaces with indicater ω_0 . And let $G = \prod_{\lambda \in \Lambda} G_{\lambda}$ be the direct product set of $\{G_{\lambda}; \lambda \in \Lambda\}$. Now, let $u_m^{(\lambda)}(x_{\lambda})$ be an any neighborhood with rank α_{λ} of $x_{\lambda} \in G_{\lambda}$. Then, we define the neighborhood of $x = (x_{\lambda})_{\lambda \in \Lambda} \in G$ as follows:

For $\forall x \in G, u_m(x) = (u_m^{(\lambda)}(x_{\lambda}))_{\lambda \in A} \subseteq G$. Furthermore, let $\mathfrak{B}_n(G)$ and $\mathfrak{B}_n(G_{\lambda}) = 0 \leq \forall n \leq \omega_0$, be two families of all neighborhoods in G and G_{λ} , respectively, such that

$$u_m(x) \in \mathfrak{B}_n(G)$$
 (for all $x \in G$) $(n = \min\{\alpha_{\lambda}; \lambda \in \Lambda\})$

$$\stackrel{\text{def.}}{\Longleftrightarrow} \ u_{m}^{(\lambda)}(x_{\lambda}) \in \mathfrak{B}_{n}(G_{\lambda}) \qquad \text{(for } V_{\lambda} \in \Lambda).$$

Then, G becomes an R-space. with indicater ω_0 .

(c. q. f. d.)

Definition 9. R-Direct Product space. For $V_{\lambda} \in \Lambda$, let G_{λ} be an R-space. Then the direct product set $G = (G_{\lambda})_{\lambda \in \Lambda}$ is called the R-Direct Product space.

Thus, we get following proposition:

Proposition 11. The group operation in the Direct Product Group G is continuous in the R-Direct Product space G. Namely, G is an R (and SR)-group.

Proof. Let

$$x = (x_{\lambda})_{{\lambda} \in \Lambda}, \quad y = (y_{\lambda})_{{\lambda} \in \Lambda}$$

be two any elements of G. And we put

$$xy^{-1} = z = (z_{\lambda})_{\lambda \in \Lambda}$$
 i. e. $z_{\lambda} = x_{\lambda} y_{\lambda}^{-1} (\lambda \in \Lambda)$.

Moreover, let

$$u_n(x) = (u_n^{(\lambda)}(x_{\lambda}))_{\lambda \in \Lambda}, \qquad v_n(y) = (v_n^{(\lambda)}(y_{\lambda}))_{\lambda \in \Lambda}$$

be any neighborhoods of x, y, respectively.

Since the group operation: $(x_{\lambda}, y_{\lambda}) \to x_{\lambda} y_{\lambda}^{-1}$ is continuous in each R-space G_{λ} ($\lambda \in \Lambda$), i. e., for any $\{u_n^{(\lambda)}(x_{\lambda})\}$, $\{v_n^{(\lambda)}(y_{\lambda})\}$ and all $\lambda \in \Lambda$, there exists a $\{w_n^{(\lambda)}(x_{\lambda}y_{\lambda})\}$ such that

$$u_n^{(\lambda)}(x_{\lambda}) v_n^{(\lambda)}(y_{\lambda})^{-1} \subseteq w_n^{(\lambda)}(x_{\lambda} y_{\lambda}^{-1}).$$

Therefore, for any $\{u_n(x)\}$, $\{v_n(y)\}$, there exists a $\{w_n(xy)\}$ such that $u_n(x)v_n(y)^{-1}\subseteq w_n(xy^{-1}). \tag{Q. E. D.}$

^{*} 講師 一般教科,数学.

Namely, we get next Proposition:

Proposition 12.

If, for each $\lambda \in \Lambda$, G_{λ} is a SR-group (or R-group), so is the Direct Product Group $G = \prod_{\lambda \in \Lambda} G_{\lambda}$.

Therefore,

Definition 10. If, for $\forall \lambda \in A$, G_{λ} is a SR-group (resp. R-group), then $\prod_{\lambda \in A} G_{\lambda}$ is called the SR-Direct Product Group (resp. R-Direct Product Group).

Furthermore, by the above arguments we get followings:

Proposition 13. Let $G = \prod_{\lambda \in A} G_{\lambda}$ be the Direct Product of R-spaces. Then the λ -th projection mapping

$$Pr_{\lambda}: G \rightarrow G_{\lambda} \ (\lambda \in \Lambda)$$

is r-continuous and

$$Pr_{\lambda} (u_n(x)) = u_n^{(\lambda)} (x_{\lambda})$$

such that $u_n(x) = \prod_{\lambda \in A} u_n^{(\lambda)}(x_{\lambda}).$

Proposition 14.

For each $\lambda \in \Lambda$, Pr_{λ} is a continuous homomorphism of $G = \prod_{\lambda \in \Lambda} G_{\lambda}$ onto the SR-group G_{λ} .

Proof. For $V x, y \in G$, $Pr_{\lambda}(xy) = x_{\lambda} y_{\lambda} = Pr_{\lambda}(x) \cdot Pr_{\lambda}(y)$.

Therefore, Pr_{λ} is a homomorphism.

(Q. E. D.)

(To be continued.)

References

- [1] K. Kunugi: Sur la méthode des espaces rangés, I, II. Proc. Japan Acad., Vol. 42 (1966) 318-322, 549-554.
- [2] T. Shintani: On the Semiranked Group (I). Memoirs of Tomakomai Technical College, Vol. 5 (1970).
- ГЗ] Л. С. Понтрягин: Непрерывные Группы, Москва (1954).
- [4] J. L. Kelley: General Topology, D. Van Nostrand Co. Inc., Princeton, New Jersey, 1955.
- [5] T. Husain: Semitopological groups and linear spaces, Math. Ann., Vol. 160 (1965) 146-160.

(Received on January 18, 1970)