On the Semiranked Group (I) — 69 —

On the Semiranked Group (I)

By Toshitada SHINTANI®

Synopsis
In this paper we will give a definition of the SR-group (namely, Semiranked Group) that is a new

notion, and will attempt its general theory.

Introduction:

An abstract space with a mathematical structure?® S is called S-space. If so, What is the method of
R-spaces ?® It is to replace the structure T in the T-space (i.e. Topological space) with the structure R.

In this paper we will define a new notion, SR-group, by the same method as is taken in the definition
of the semitopological group. We shall use the same terminology that is introduced in [1] and [2]. And
throughout this paper, we shall treat only R-spaces with indicater wp. = We shall denote the point of an
R-space by x,y,z, -+, the family of neighborhoods of x with rank # by @, (x), and fundamental sequences

of neighborhoods with respect to x4 by {u. (x)}, {vn (x)}, ---.

"§1. Continuous, Homeomorphism.

In this section we will define two new notions, #-continuous, and »-homeomorphism.

Definition 1. #-continuous.

Let G and H be two R-spaces. A mapping f of G into H is said to be r-continuous if it satisfy next
condition :

(#x) for each X€G and any {ux(x)}, there exists a {v, (f(x))} such that f(un(x)Svn(f(x)).

Remark 1. (##) implies if x€ {li7m X} then f(x)e{linm fx2)}.

Definition 2. »-homeomorphism, lr-homeomorphic.

Let G and H be two R-spaces with same indicater wo. A mapping f of G onto H is said to be 7-homeo-
morphism if it satisfies next conditions:

1) f is a bijection.®

2) fis (bi-)continuous.

3) for any {un(x)}, {v~(f(x))} (such that vy (f(x))=f(#x(x)) is a fundamental sequence of neighborhoods
with respect to f(x)€ H.

If there is a homeomorphism between two R-spaces, then they are called homeomorphic with each other.

§2. The definition of SR-group and R-group.

Definition 3. (i) An R-space G that is also a group is called a SR-group (i.e. Semiranked group) if
the operation (x, y)—>xy is continuous as follows :

(@) Let x,y be Vx,y€G. Then for any {un(x)}, {va(y)}, there exists a {w, (xy)} such that un(x)v.(y) <
wa(xy).

G, R B

1) [121.
2) [13, (2]
3) [81.

4) [2], I, p. 551.
5) J. Dieudonné: Foundations of Modern Analysis. Academic Press, New York, 1960, p. 45.
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(ii) An R-space G that is also a group is called an R-group® (i.e. Ranked group) if the mapping
(x,5)-> xy~! is continuous as follows:

(b) Let x, y be Vx,y€G. Then for any {#{x)}, {vx\3)}, there exists a {wn(xy 1)} such that u(x)v.(y)?
Swy (xy7L).

Remark 2. (a) implies that, if xe{linm Xn} and ye{linmyn}, then xy€ {lim x»y,}. (b) implies that, if
xE {linm Xn}, YE {li;n yn}, then xy1€ {I'Lm Xnyn1} i

Remark 3. (b)[5] (DHII), p. 246.

Evidently, we get following proposition:

Proposition 1. Every R-group is a SR-group. But the converse is not true.

Theorem 1. Let @ be a fixed element of a SR-group G. Then the mappings

ra: X—Xa, lq: x—ax
of G onto G are homeomorphisms of G.

Proof. It is clear that 74 is a one-to-one and onto mapping. Since G is a SR-group, for any {un(x)},
{vn(@)} there exists a {wn(xa)} such that #,(x)v.(@)Swn(xa). Moreover 7a(un(x)=un(¥)aSun(x)va(a)=
W (¥@)=wn (74(x)). Hence, 74 is continuous. By the same argument, »41: x—>xa1 is continuous.

Furthermore, {7a(#x(x))} is a fundamental sequence of neighborhoods with respect to xa€G. Therefore,
7a is a homeomorphism. The fact that /5 is a homeomorphism follows similarly. (Q.E.D)

Definition 4. Translation. #4 and I4 are, respectively, called the right and left translation of G.

Corollary 1. Let O be an 7-open,” F an 7-closed® and A any subset of a SR-group G and let a€G.
Then:

(i) Oa, aO, AO and OA are r-open.

(ii) Fa, aF are r-closed.

Proof. Since the mappings in Theorem 1 are homeomorphisms, (i) is obvious. By the same argument,
Fa and aF are rclosed in (ii).

Since AO= gAaO, OA= aLéAOa, and the union of 7-open sets is 7-open. (Q.E.D)

a
Therefore,

Remark 4. 74 and I4 can be considered r-open and r-closed mappings.

Corollary 2. Let G be a SR-group. For Vxi, %2€G, there exists a homeomorphism of G such that
S (x1)=x2.

Namely, G is homogeneous®

Proof. Let x1~lxa=a€&G, and consider the mapping f: x—xa. (Q.E.D))

Theorem 2. If SR-group G satisfying F. Hausdorff’s axiom (C'® is complete,!’ then G is of the second
Category.

§3. The neighborhoods of identity of a SR-group.

Let G be a SR-group, and ¢ be its identity. e, will denote the family of neighborhoods of e with rank
n, and {Un}, {Vx}, --- fundamental sequences of neighborhoods with respect to e.

The system {e,} possesses the following properties:

(A) for every V in g, e€ V (where e=;l;)06n.)

(B) for any U, V in ¢, there is a W in ¢ such that WEUN V.

(a) for any V in ¢ and for any integer #, there is a m, m>#n, and a U in en such that UcS V.

6) [5].

7) 8) [7], 1L, p. 788.

9) [14], p. 28.

10) F. Hausdorff: Grundziige der Mengenlehre, 1914, p. 213.
11) [13, L pp. 554-555.
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(8) Gee.

These are obvious as the properties of neighborhoods in an R-space. This {&»} has introduced in [5].
We shall call this system {e.} a fundamental system of neighborhoods of e.

Furthermore, from (a), we get following properties :

(SRy) For any {Ur}, {Va}, there exists a { Wy} such that U, VpC Wh.

(SRp) For any {U,} and for any x€G, there exists a {V,} such that xUpx-iCV.

(SR3 1) (resp. (SR37)) Let x be any point of G. For any {U,} there exists a {vn(x)} such that xU,C
Un (%) (resp. UnxCwn(x)), and, conversely, for any {u,(x)}, there exists a {Va} such that un(x)Sx Vs (resp.
Un (K S Var).

Proof. (SRy) is immediate consequences of (a), putting x=y=e. We shall prove (SR3l). Let {un(x)}
be some fundamental sequence of neighborhoods with respect to x. Because of (@), there is a {vx (%)} such
that u, (x) UnC vy (x).

Since x€ux(x), xUnSvn(x). Conversely, taking some fundamental sequence of neighborhoods with
respect to x71, say {v.(x1)}, and applying (a), there exists a {V,} such that v, (x1)u, (*)< Vi Since
¥ 1€ v, (x7Y), X1y (X)E Vi, . €. tn (x)Sx V5. Similarly we can prove (SRj 7).

Next, we shall prove (SRz). For any {U,} and for any x€G, because of (SR /), we get a {v, (x)} such
that xU,Svy, (x).

Then, from (SR;7), there exists a {V,} such that v, ()€ V,x. Hence, xU,x1C V.

Remark 5. (a) follows from (SRy), (SRy), (SR3 1), (or (SR3 7). Therefore the three conditions above are
not only necessary, but sufficient for a group G which is also an R-space to be a SR-group.

Proof. The proof is similar in [5]:

Take any {un(x)}, {v.(3)}. From (SR3l) and (SRs7), there are {U,}, {Va} such that wuy (x)SxUy,
vn (Y)S Vay. Applying (SRy), we get a {Wy} such that U, V,,& W, and moreover, by (SRy), a { W,'} such
that xWrx—1C W,'. From (SR 73) again, there is a {wn (xy)} such that Wo'xySwx (xy). Then, u,(x) vn (y)S
2UnVaySxWayS Wi/ xySw,, (x3).

Now, let G be a SR-group, where defined families of subsets, ¢, (=0, 1, 2, ---), which satisfy axioms (A),
(B), (@), (B), (SRy), (SRy), (SR;). When we take the totality of xV for VE€e, as €, (x), (SR31) is obviously
fullfilled, and G becomes a SR-group. Taking {V.; VE€e,} as € (x), we may obtain another SR-group. In

any case convergence of sequences coincides.

§ 4. Sufficient conditions for (SR;), (SRy).

As sufficient conditions for (SRy), (SRs), respectively, we have
<1> there exists a non-negative function ¢ (4, ¢) deflned for 2>0, #>0 such that 2]im & (4, p)=o0, and
Jn>oo

the following hold; if U€e;, V€em, WEer and UVS W, then there exists a #*> ¢ (I, m) and a W* in e *
such that UV W*cC W,
<2> there exists a function ¢ (2; x)>0 defined for >0, *€G such that lim ¢ (1; x) for any fixed x,

and the following holds; if U€em, VEen, x€G, and xUx"1SV, there existsa #*> ¢ (m; x) and a V* in g,*
such that xUx1CV*CV.

The proof is similar in [5].

When {e,} satisfies the condition:

() if UEes, VE&em, then UNVEep, where #>max (I, m).

1>, {2> may be replaced by, respectively,

{1"> there exists a function ¢ (4, ) such as ¢ in 1>, and the following hold; for any Ue €1, VEem,
there exists a n>¢ (I, m) and a W in &, such that UVCS W.

{2) there exists a function ¢ (4; %) such as ¢ in <2), and the following holds; for any U€e, and for
any x€G, there exists a #>¢ (m; x) and a V in e, such that xUxr1CV,
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§5. Subgroup, Normal subgroup, Quotient group.

In this section we will define several new notions, i.e. SR-subgroup, R-subgroup, SR-normal subgroup,
R-normal subgroup, SR-quotient group, and R-quotient group.

Definition 5. SR-subgroup, R-subgroup.

(1°) Let G be a SR-group and H a subgroup of G. Then H, endowed with the rank induced!® [rom
G, is called a SR-subgroup.

(2°) Let G be an R-group and H a subgroup of G. Then H, endowed with the rank induced from G,
is called an R-subgroup.

Definition 6. SR-normal subgroup, R-normal subgroup.

(i®) If G is a SR-group and if N is a normal subgroup of G, then N is called a SR-normal subgroup.

(ii®) If G is an R-group and if N is a normal subgroup of G, then N is called an R-normal subgroup.

Proposition 2. Every 7-open subgroup H of a SR-group (hence of a R-group) G is r-closed.

Proof. For each x€G, xH is r-open by Corollary 1.

Hence, H=G—UxH is r-closed, because UxH is r-open, where the union is taken over all pairwise
disjoint cosets different from H. (Q.E.D)

Proposition 3. Let U be a symmetrict® neighborhood of e in an R-group G. Then H= U U?isan r-open

nzl

and 7-closed subgroup of G.

Proof. Let x, y€H. Then there exist positive integers #s, 7 such that xeU», y€ Uz,  Hence,
xy L€ Un (Un)t=Un (U-yn=UnUn=Umn+rc H. Thus, H is a subgroup of G. Now to show that H is
r-open, we observe that for each y€ H, yUS yH=H. This proves that H is 7-open and #-closed by Propo-
sition 2. (Q.E.D)

Proposition 4. If H is an r-closed R-subgroup of an R-group G, so is rclosure!®? H. If His an rclosed
R-normal subgroup of G, so is H.

Proof. By using H=H, we get this Proposition.

Let G be a SR-group and H a subgroup of G. Let G/H denote the collection of all distinct cosets
{xH}, x€G. Let f be the canonical mapping of G into G/H (i.e. f: x—>xH). Then, for any fundzimental
sequence of neighborhoods of ¥€G, we can consider {f(#»(x))} a [undamental sequence of neighborhoods
with respect to x€G/H (x=xH) (thus, we put f (. (x))=ém (%)) Therefore, G/H is an R-space (endowed
with the rank induced from G). Thus,

Definition 7. SR-quotient space, R-quotient space.

(I° Let G be a SR-group and H a subgroup of G. Then G/H, the collection of all distinct cosets
{xH}, x€G, is called a SR-quotient space.

(IT°) If G is an R-group and if H is a subgroup of G, then G/H is called an R-quotient space.

Remark 6. f is an onto and 7-continuous mapping.

Proposition 5. Let G be a SR-group and H a subgroup of G, then G/H is a homogeneous space.

Proof. Let #i, #2€G/H, then i1=x1H and xe=x2H. Let @ bhe in G such that ax;=xs. Define the
mapping fu: ¥=xH—(ax) H=ak for Vi€G/H. Then fo is well-defined and is a one-to-one mapping of
G/H onto itself. Also fu1: i—(a1x) H. Obviously, fa is bicontinuous. This fu is a homeomorphism as
is easy to check. Clearly, fu(¥1)=aki=(ax)) H=xH=1%, shows that G/H is a homogeneous space. (Q.E.D.)

Proposition 6. Let H be a subgroup of a SR-group G, and f the canonical mapping of G onto G/H.
If {e.} is a fundamental system of neighborhoods of e€G, then {f(ex)} is a fundamental system of neigh-
borhoods of é=f(e)€ G/H.

Proof. For each e, f(en) is regarded as a neighborhood of &.

12) [2], II, pp. 549-550.
13) A subset U of a group G is said to be symmetric if U=U"1,
14) [71, IIL, pp. 792-793.
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Proposition 7. Let G bc a SR-group (or R-group) and N a normal subgroup of G. Then

1) The canonical mapping f: G—G/N is an r-continuous and homomorphism.

2) G/N is a SR-group (or R-group).

Proof. These are obvious.

Definition 8. SR-quotient group, R-quotient group.

Let G be a SR-group (or R-group) and N a normal subgroup of G, then the group G/N is called
a SR-quotient group (or R-quotient group).

Proposition 8. Let G be an R-group, N a normal subgroup of G, M any R-subgroup of G, and f: G—
G/N. Then f(M) is an R-subgroup of G/N, and it is homeomorphic with MN/N.

Proof. By an isomorphism theorem of abstract groups.

Proposition 9. (The first law of isomorphism). Let N be a normal subgroup of an R-group G and M
any R-subgroup of G. Let f(im)=m(MNN), m& M. Then, f endows the rank of MN/N onto M/MNN.

Proof. By the above arguments.
Moreover,

Proposition 10. (The second law of isomorphism). Let G be an R-group, N and M two normal sub-
groups of G such that N©M. Then, G/M is homeomorphic with (G/N)/(M|N).

Finally, the autho thanks to Prof. Koémei Suzuki***> Hidetake Nagashima,****> Tomisaburd

Taniguchi,****) and Heishird Hayasaka*** deeply.

(To be continued)
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