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Synopsis.
In this paper we report of some results on the ranked groups and on the linear ranked spaces.

§ 1. Direct Product Decomposition**,
We shall give a better definition of Direct Product Decomposition than proceeding one (14].
Let (Ni, Bat?) (I<i<m) be ranked groups with same indicator @ and {G',B./} a direct product space
of the ranked spaces {Ng, B®} (I<i<m) defined as follows :
G'=N,®---QNn (direct product group);
B (x) = {ﬁ@V(‘) (x1); VO (x;) € Bai® (x3) (€< Va;<Lw) & Min (ay,..,am) = a}
ft)‘rl any x'= (Xp,.Xn) (;€N;) and any a such that 0<a<o.
And we define the fundamental sequence in {G’, B’} as follows :

"

Let x'= (X1,...5) be any point of {G/,8.'} and V./(x') (0<a<w) an element of B'=UB,(x). Then
)

the sequence {Vo'(x'); 0<a<lw} such that Vo' (x/) = (Val (x;)) is said to be a fundamemaa-l sequence of x’
in G' if, for each 7, I<i<m, {Va@® (x;3); 0<a<w} is a (undal:fef\?al sequence of x; in Gj.
Difinition. Let (N;Ba™®) (I<i<m) be normal in (G,B.). We say that (G, B.) decomposes into
the direct product of its subgroups (Ny, Ba®) ..., (Nm, Bat™) if the following two conditions are fulfilled:
(i) G can be decomposed into the algebraically direct product of its subgroups Ny,..,Num;
(i1) For any fundamental sequence {Va(x)} of x in G and for each i=1,2,.,m, there exists a
fundamental sequence {V,,m(xoi};:’f x; in Ng such that Va(x) =V.W(xy) -V (xpm) (x=2x1%Xn).

Theorem A. We have the followings.

ral RG 15% RG
(1) There is a mapping ¢; of Ni into G' and N'i(=¢;(Ni)) becomes a normal subgroup of G'.

And in the sense of the ranked groups, we have
i m m
Ni=N;', IQN;=IIQN;'.

RG i=1 i=1
(2) G’ can be decomposed into the algebraically direct product of its subgroups N'y.,N'm.
(3) For each i=1,2,..m, and any fundamental scquence {Vo®(x's)} of x's in N's, there cxists a

0<a <o

Fundamental sequence {Va(x')} of x'=x'v---x'w in G' such that Vo (x'y) -V (x'n) S Ve (2')

for all a, 0<a<w.
Proof.

RG in RG .

(1) 5 Put @s: Ng D xi1—> (€1, Ci-1, X3, C441,0m, €m) € G’ and N'y=¢; (N3) (I<i<m).

Then N'; is a normal subgroups of the abstract group G’ and each ¢; is an algebraic isomorphism.
g (2 g p

* R, W, —RHEE,
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1) RG = ranked group.

2) IS = induced ranked space.
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By B/ (Ni') =8/ NN,/ (0<a<w) N;i becomes an induced space ofRGG’. We will show that N;’ becomes a
subspace of G/. For any V' (xs/, N;') € B/ (N;') we have
V! (x4, Ni') =Ni/ 0 (V(ey) ..., VED (g-9), VO (24), VEFD (g54y) ..., VW (e))

= (e1yen) €4-1, Ny, €141,00s, €m) N (VO (1) 00, VED (54), VO (x5), VED (g51) ..., VI (e) )

= (1N VWD (¢9) o, 5.1 N VED (0;_1) , NNV (x5), 511N VETD (€511) o, € N VR (25))

=V (#3) € B (x3).

Therefore, for every fundamental sequence {V’;,(x';, N’; )} of x'; in N';, {V", (x } becomes a fundamental

0<rio 0y

sequence of x’; in G/,

Now, since V';(x'i, N'y) & N’;, for any fundamental sequence {V’;(x';, N’;)}, there exists a fundamental

07w
sequence {V’; (x';)} of x'; in G’ such that V', (x/¢, N';) = N';N\ V', (x5, N';) = N'snN' V', (x'3).
o\r v RG
Thus N’; becomes a ranked subspace of G'.  Hence N'; is normal in G

Next we will show that N; ;N’i and 177n® Nigﬁ ® N';. It is clear that ¢; is a bijection.
Let V (x;) be any element of 8. (x;). Sii;lcl:e v (xq;)z_(_EIN¢ we have Ny N V(xg) = V(xi).
Therefore we get
0i (NiNV (x5)) = (e1yens, €3-1, NeNV (X5), €3:41,00n, €m) € Ba NN’y = Ba (N';)
and
0s (N: NV (x5)) = (er,emn, €1-1, V(%) € +1y0y €m) € B'a (x) when x' = (ey,..., €21, Xz, €i+1,000, €m)
Thus, for any fundamental sequence {Vr(x:)} of xz in Ny, {p: (Vr (x,, )} {(e1yeery €3-1, V7 (%5), €44 1,00r, €m) }
becomes a fundamental sequence of x/; m\rli’u’) Thus ¢; is a rank preserving R-continuous mappinzsg?m
N; onto N'i.
Now, let {V'a(x/s, N/§)<} be a fundamental sequence of x'; = (e1,..., €s-1, Xi, €5+1,..., €m) in Nz,
Since N’; is a subspace of\éfa;here is a fundamental sequence of x'; in G/, {Va (x’i)l, such that
Ve (x's, N';) = N's0N Ve (x's) € B'ray (N'3) for some 7 (a), 0<7 (a) <o. e
From V' (x's) = (Va® (e1) oy Va@ D (e4-1), Val® (x:), Va4t (e541) e, Val™ (em)) and Va® (x5) &S N; we have
Via(2's, N's)=(1,y €i-1, N1, it 1,0y €m) N (VaDer),r, Va=Dleso), Va®(xs), Ve D(es+1),, Vai™(em))
= (€1, €2-1, Ni N Va® (x5), €54 1,0e, €m)
= (1,000, €i-1, Va'® (%), €4+1y0eey €m) -
Thus we get o1 (Ve (s, N's)) = Va® (x5).
Hence if {V'a (/s N’ )} is a fundamental sequence of x'; in N'; then {p; ! (V'a (', N’ ))} e, {Va® (x4)}

<a<w <a<w Salw

becomes a fundamental sequence of x¢ = @g~1(x'y) in Ni.

Therefore ¢;~! is an R—continuous mapping. Thus ¢; is an isomorphism in the sense of ranked groups.
12

Thus we have N; = N/,
o1
Ny D xp—xy € Ny
® ®

® e ®
Put o NgD xp—x's € N
® ®

® Pm ®
Nmaxml_’xlmeNlm
Then there exists a fundamental sequence of x'; in N';, {Va(®! (xoi) },< such that g (Va® (x4)) S V@' (x/;)

(#i=pi(x5), 0<a<w) for each {V«“’(tgj( .e, F.S. of x; in Ng, I<i<m). Thus there is a fundamental
a<w

sequence of (X'1,e., ¥'m) in N1@Q@N'm, { (Vo' (x1y) ..., Valm ( x’0 } such that ¢ ((Va® (x1) e, V@ (x:)))
< (VaW(x)),.r, Vel (1)) (0< a<lew) for all {(VatD(xy),.. ,Va(m)(xm N} (e, E.S. of (X1, Xm) in Ni@-*@Nm).
0<a<w

Namely ¢ is R—continuous.
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Analogously ¢! becomes an R-continuous mapping. Thus ¢ is an isomorphism in the sense of ranked
groups. Therefore we have 1,7j®N¢ ;I?@N’t.

(2) ; From abstract grouzp_ltheory fv_el get this statement.

(3) ; Since there exists {Va® (x's)} (i.e., F.S. of xs in G') such that Va®'(x's) = Va® (x's) N Ny for

La<lw

each {Va' (x¢<’)}, there exists {Va/(x') }(i.e,F.S. of x'=xi/---xn’ in G’) such that Vo' (xy/) -Vt (xn)
= (VaO (x/) ﬂ\;\lf;' (Vi (x'm) N Na)SVa® (1) -+ Vol (x15) SV (2'y2'm) in G, (Q.E.D.)

Theorem B. Letﬂg be the direct product decomposition of Ny, Nm and G' the direct product
group ofk?Vu,..., Nam. Then there exists an isomorphism of the ranked group G' onto the ranked group G.
And there exists an R-continuous identity mapping of the ranked group Ny onto itself for each i=12,..,m.

Proof. Let {Va'(x)} = {(Va® (x) 0, Va™ (xn)) } (Vielx') € B'r (x) for some 7, 0<7<w) be any
fundamental sequence of x’ in G'.

Since G’ is a direct product ranked group we have Vo (x;) € %%L)(x‘) for some 7(a), 0<7(a) <o,
and {Va® (xdl becomes a fundamental sequence of x; in Nj.

Since{eGG i;)\tahzwdirect product decomposition of Ny,..,Nm, for every fundamental sequences {Va((xy)},...,
{Val™ (xm)} in the groups Ni,..., Nim, there exists a fundamental sequence of x' in G, {U« (%)}, such that
Va® (x1) -+ Val® (4) © Ua (x'), &' =312 (0<a<w). Thus we have ¢ (Ve (x')) = Ve (x1) -+ Va®™ (xm)
CUx(x). Therefore ¢ is R-continuous.

Conversely, let {Va(x)} be any fundamental sequence of x=uxi-+-xm (2¢€Ny) in G.
RG RG RG
Since G is decomposed into Ni,...,Nm, there is a fundamental sequence of x; in Ny, {Va®(x){I< i< m), such that

0<a <o
Va(x) = Va® (x1) == Vai® (xm) = Va® (x1) @ Q V™ (xm) .
Thus we have
0 1 (Va(x)) = (Va® (x1) e, Vol (x0)) = Vo' (X), 2'= (X150, Xm)
Since {V'a (x')} becomes a fundamental sequence of x’ in G’, ¢=! is R-continuous.
Next, it is clear that gogg is the identity mapping ofmj\/} onto itself.
Moreover we have
0ops (Va® (x5)) = ¢ ((e1,enry €i-1, Val® (X4), €451,y €m) ) = Va® (x:).
Thus @og¢ is R—continuous. (Q. E. D.)
Theorem C. If G is the direct product decomposition of its subgroups (Ny, BaV) and (N, Ba®?)
then we have (G/Ny, Ba/Ny) == (N2, Ba®).
Proof. Let v (%, x) € G and ¢ : N2 D xo—x2 Ny € G/Ny. It is clear that ¢ becomes an algebraic
isomorphism of N; onto G/Ni.
Next, for ¥ V® (xp) € B3®), we have
V® (x5) « Ny=V® (x9) « VA (1) Ny (for some VI (x;) € BaV)),
=V (x1) « V (x5) - Ny €Br/N; (for y=Min (e, §)).
Because abstract group G is the direct product of Ny and No.
Thus {o(Va® (x2))} becomes a fundamental sequence of ¢ (¥2) = x2Ny in G/Ny for any fundamental
sequence {Va® (x2)} of x2 in Na.
Therefore ¢ is R—continuous.
Conversely, we have
@1 (Va® (x1) + Va® (x5) « Np) = "L (VD (2) « Nj) = Ve ® (1) (0<a<lo)
{Va® (x1) » Va® (x7) « N1} of x=x; x2 in G/Ny.

I

for any fundamental sequence {Ve (x)+ Ny}
Namely, ¢! is R-continuous.

Therefore ¢ becomes an isomorphism in the sense of ranked groups. (Q.E.D.)
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§ 2. Convergences in the Ranked Group.
Let us consider two convergences, i. e., ortho—convergence and para—convergence in the ranked group.
Theorem. Let (G,Be) be a ranked group with indicator w>wo. Suppose that
Ba(a) = a+Bale)=Bale)ra (0SV<w, VuEG)
and {paVa(e)} (p=€G) is monotone decreasing iff {Va ()} is monotone decreasing.
Then we have
{ortho-lim pa} D p in G {para-lim pe} D p in G
for any sequence { pgs}Kin (G, (:Ba). )
Remark. 1f (G, 8B.) is commutative we have always @ + Ba(e)=Bale) «  for each a, 0<a<lw, and any ¢ €G.
Proof of the theorem. Since {ortho-lim pa} D p there exists a fundamental sequence {Va (p)} such
that Va(p) D pa for each a, 0<a<lw. As (é, Be) is a ranked group there exists a fundamental sequence
{Va' (p=1) } such that pa~! € Va(p) 1< V! (p7}) for each a, 0<a<lw.
On the other hand, there exist a fundamental sequence {Ue«(e)} and a monotone decreasing sequence
{Ud (pa™1) } such that
e€pat+ Va(p) = pat+ Ua(e) p (from Va(p) D pa and Ba(p) = p+Bal(e))
=Ud (pa)+ p (Ue'(pa™) € Brer (pa™l), 7 (@) T @ as at w) (from Ba(p) = p-Ba(e)).
Thus we get Uz (pa=1) 3 p~! for each a, 0€a<w.
Therefore we have
p=(N 1€ U (pa) 1S Us (pa) (0<a<lw)
for some monotone decreasing sequence {Ua'/(pa)} such that Us"’ (pa) € Bscar (Pa), 0(a) t @ as at .
Namely, we have {para-lim pa} D p.
Conversely suppose tahat {para-lim pa} D p. Since there exists a monotone decreasing sequence
{Va(pa)} such that Va(pa) D p & Va?pa) € B (pa) for each a, 0<a<lw, and ¢(a) T 0 as a t 0, we get
D E Valpa)= pa-Va(e) (0<a<lw)
for some fundamental sequence {V./(e)} in (G,Ba). Thus there is a point pa’€ Vo' (¢) such that pa« pa’=p
for each a, 0<a<lw.
Thus there exist two fundamental sequences {U.’(e)} and {Ux (p)} such that
pa=p Pl € p Vo' (1S p Ud () = Ua (p)
for each @, 0<a<lw. Therefore we get {orlho—lim bpa} D p.

This completes the proof.

§ 3. Linear Ranked Spaces.
We shall introduce linear ranked spaces as certain generalized normed linear spaces.
Let E be a linear space over real or complex field K and also a ranked space with indicator ws.
We now introduce following notations :

E={E,B,} (i.e., a ranked space);

SEEQL)J“SBHQ

n=0

|| 2|l v= the rank of V(x) € B;

{un(x) } = a fundamental sequence of x in E;

F(x) = all of fundamental sequences with respect to x in E.

Suppose that E satisfies the following condition (I) or (II) :

(I) (1) For YAEK and YVEB(x), there is a WEB(Ax) such that

lxllv
BE

(above [ ] is the Gaussian symbol);
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(ii) For yUE®R(x) and YVEB(y), there is a WEB(x+y) such that

. Lxl y
Urvew & | x+yll w<Min {{ 5 "7, [” 2”"]}
fthus || x+y  w<Min. {12l [ vie}).
(II) (1°) For y2€K and V{un(x)} € &(x), there is a {wn (2x) } € &(Ax) such that
! il g,
2ot (x)Son () & JAx = (- |'”x"’]u‘]

for all n, 0<n<wo,
(2°)  For v{in(x) YEF(x) and V{ra(¥) }EF(v), there is a {wn(x+y)}EB (x+y) such that

n (X) + U () S wn (x+3) & Txtyil wngMin. {[ | x2]| u"j, [” y2” v”]}
for all n, 0<n<wo.
Definition. We call above E a linear ranked space over K.
Remark 1. Above E becomes a [inear ranked space in the sense of (14, p. 58].
Remark 2. From the axiom (a) we have following statements :
(1) For yUER(x) there exists VEB(x) such that U2V and | xlp< bl vl
(2)  For v{un(x)}EF(¥) there exists {vn{x)} €T (x) such that

tn (X) Dvn(x) & x|l " < Ix) un<m° for all n, 0<n<w,.
3

Remark 3. ' x| +=0 for all VE€B(x). ' x = wo. [-*1—]=wo for 2=0.
v 7{:5}(one point set) | 2 I

Examples of above spaces.
Type (I) ; (1) (Semi-) Normed space (E, i +1).
Letv(n;0) ={x€FE; ] x| <—1};} B, (0) ={v(n;0)} (one set family) and let Bo={E}.
(2) Countably normed space (@, {[ 1l p}p=n2...) -
Let v(n; 0)={0€QD; | g.?lll <—27},‘1§n (0) ={v(;0)} (one set family) and let Bo={D}.
(3) Countably normed space as linear Metric Space.
I.M. Gel’fand (8, p.21] introduced a metric in a countably normed space. A metric space is considered
as a ranked space with depth we.
(4) Perfect space. (See Gel’fand (8, p.54]).
(5) Dual space of countably normed space (@*, { |« ||*p}p-1,2.00) .
Let 00n, 53 0) = (/€055 [l £ ¥p< 3, Bul0) = {v0n p3 0/ p=1,2,) and let Bo= (0¥},
(6) L. Schwartz’s distribution space D.

@)
Let v(n k;0)={¢€D;CCar. o=[—4, k]o. I?z<1x. sup. ol(x) | <-J7} (F>0) and let B,(0)={v (n, k;0); V&>0}.
I<n z

(7) Dual space D’ of space D.

n
Let v(n;0)=0v(n;0, {mi..., mp}t) =N Un; where arbitary integers my<ma< - <mn and
1

Unj={t€D'; sup |z(g) | <1} and let B, (0) = all of above v(n:0). -

¢€v(mj; 0,1, A ;) n
Type (II) ; (i) All examples in type (I}.

(ii) Union space of Countably normed spaces. @¢),

o
Let @)= @ be the union space of countably normed spaces @ (m=1, 2,---) where
m=1
POCPDC...cPm - & the systems { |+ ]| ¢} and {||+ ] p¢m+D} are equivalent in @),
p=1,2,.. 12,0

\ . 1 .
And put v, m; 00 = {¢ €D || ¢ | ntm<] »nf}, B, (0 ={vin,m;0) ;m=1,2,} for n>1,

and Bo= {P},
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(iii)  Conjugate space @', .

Let @ be the conjugate space to a countably normed space @. Then we have ¢’=°de)’(p) by Gel’fand
(8, p. 36). 7

(iv)  Nuclear Space in the sense of Y. Nagakura. See (7 ; 1.

§ 4. A theorem on locally convex linear topological spaces.

1. We consider again linear ranked space in the sense of (14, p. 58).

Theorem. Locally convex linear topological space S hecomes a linear ranked space.

Corollary 1. Conjugate space S' to a locally convex linear topological space S is a linear ranked
Space.

Corollary 2. Let S\CS:C--CSxC- be an increasing sequence of locally convex linear topologic il
spaces S (k=1,2,--). Then the inductive limit space® S=(L0J Sw becomes a linear ranked space. Thus
the conjugate space to S is so.) o

Proof. Suppose that the locally convex topology on above linear space S is defined by a system of
semi-norms {pa(x)} on S. Let
a€A

v(n,B;0)= {x; a € BDpa (.\‘)<~2{} for any finite subset B of A
and let

8, (0) = {v(n, B;0) ; Y BSA}.

Then we get above theorem.

Since S is a locally convex space, we get corollary 1.
Finally, we shall prove corollary 2. Let pa (x) be a semi-norm on S such that, by the topology on Sk,
Pa (%) is continuous on S for each k=1,2-. Since all of above semi-norms {pe(x)} defines the locally
convex topology on S, S is a locally convex linear topological space. Thus we get C():g?lary 2. (Q.E.D.)

2. Examples of such linear ranked spaces.

(1) D and its Fourier transformation D.

(2)  Fréchet spaces (thus Banach spaces).

(8) LF-spaces (i. e., the inductive limit space of Fréchet spaces).

(4) Bornological spaces and the inductive limit space of Bornological spaces.

(5) Barrelled spaces and the inductive limit space of Barrelled spaces.

(6) Montel spaces and the inductive limit space of Montel spaces.

(7)  The conjugate spaces to above spaces.

loe
(8) L. Hérmander’s space ¥ (2)=n £ p (£2)8
1V E pok.

§ 5. Linear Forms and Extension Theorem.
Let R and S be two linear spaces over the same field @ (of real or complex numbers). The mapping
fof R into S is called linear if
Sty =fx)+ fly), fQx) = 2f(x),
for all x€R, vER and 2€®. The linear mapping f is one-to—one iff f-1(0) = {0} ; in general f-1(0) is
a linear subspace of R. Moreover in the set L of all linear mappings of R into S, addition and multiplication
by scalars can be defined by
(f+8) () =f(x)+g(x), Af) (x)=2(f(x)) ;
then L becomes a linear space over @.

Proposition 1. When R and S are both linear ranked spaces, the R-continuous linear mappings

3) [11], p. 27.
4) (121, p. 77.
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of R into S form a linear subspace of L.
Because the R—continuity of f and g implies the R-continuity of f+ g and Af.

Proposition 2. If R and S are (homegencous) linear ranked spaces and f is a linear mapping of
R into S, then f is R-continuous on R iff f is R—continuous at the origin.

Proof. If f is R—continuous at 0, and {U.(0)} is any fundamental sequence of 0 in R, there is a
fundamental sequence {V,(0)} of 0 in S such that f(U,(0))=V,(0) for every n, 0<nwo. Then for each
point @ of R, fla+U,(0)) = f(a)+f(Un(0))=f(a) +V»(0), and so f is R-continuous at a.

Definition. If R is a linear space over @, a linear mapping of R into the scalar field @ itself
is called a linear form (or linear functional) on R. A linear form f on a linear ranked space R is called
continuous at x€R if

{lim x2}3x in RDlim f(xa)=x in O.

Remark. If R is aanormed linear spa:e then we have

{lim xa}Dx in ROIim| xa—x | =0 in R.

Proposition 3. I faa linear form f (clm a (homogencous) linear ranked space R is continuous at 0,
then f is continuous on the whole of R.

Proof. If {lim x,}Dx then there is a fundamental sequence {v»(0) + x} of x such that v,(0) +x3Dx,
for each #n, 0< n<72¢)o. Then {vx(0)} becomes a fundamental sequence of 0 and we have v, (0) D xn—x for
each n, 0<n<wp. Thus

Son) = f(x) =f (xn—2)— 0.

Proposition 4. Let f and g be two continuous linear forms on R and X an r-dense subset of R.
When f(x)=g(x) for any x€X, we have f=g on R.

Proof. For any x€R there is a sequence {x,} such that {l/im x.} D x and x, € X.

Since f and g are continuous we get f(x) =g(x) from f (xz) =g(7;cn).
From linear topological space theory®, we have the Hahn-Banach theorem, i. e,

Theorern (Hahn-Banach extension theorem). Suppose that p (x) is a positive homogeneous subadditive
Sfunction on a real linear space R. If a linear form q(z), defined on a linear subspace X, satisfies

q(z) <p(z) for z€X
then q(z) can be extended to a linear form £, defined on the whole of R, which satisfies
lx<p(x) for xER.

If R is a linear ranked space and p(x) is continuous at 0, then € is also continuous.
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