On Generalized Continuous Groups

By Toshitada Shintani*

Tomakomai Technical College (Received on January 10, 1972)

Synopsis.

In this paper we report of some results on the ranked groups and on the linear ranked spaces.

§ 1. Direct Product Decomposition**.

We shall give a better definition of Direct Product Decomposition than proceeding one [14].

Let $(N_i, \mathfrak{B}_{\sigma}^{(i)})$ $(1 \le i \le m)$ be ranked groups with same indicator ω and $\{G', \mathfrak{B}_{\alpha}'\}$ a direct product space of the ranked spaces $\{N_i, \mathfrak{B}_{\alpha}^{(i)}\}\ (1 \le i \le m)$ defined as follows:

$$G' = N_1 \otimes \cdots \otimes N_m \quad \text{(direct product group);}$$

$$\mathfrak{B}_{\alpha'}(x') = \{ \prod_{i=1}^m \bigotimes V^{(i)}(x_i); \ V^{(i)}(x_i) \in \mathfrak{B}_{\alpha_i}(i)(x_i) \ (\alpha \leqslant \forall \alpha_i \leqslant \omega) \ \& \ \text{Min } (\alpha_1, \dots, \alpha_m) = \alpha \}$$
 for any $x' = (x_1, \dots, x_m) \ (x_i \in N_i)$ and any α such that $0 \leqslant \alpha \leqslant \omega$.

And we define the fundamental sequence in $\{G', \mathfrak{B}_{\alpha}'\}$ as follows:

Let $x' = (x_1,...,x_m)$ be any point of $\{G', \mathfrak{B}_{\sigma}'\}$ and $V_{\sigma'}(x')$ $(0 \le \alpha < \omega)$ an element of $\mathfrak{B}' = \bigcup_{n=0}^{\infty} \mathfrak{B}'_{\sigma}(x')$. Then the sequence $\{V_{\alpha'}(x'); \ 0 \le \alpha < \omega\}$ such that $V_{\alpha'}(x') \equiv (V_{\alpha}^{(i)}(x_l))$ is said to be a fundamental sequence of x'in G' if, for each i, $1 \le i \le m$, $\{V_{\alpha}(i), 0 \le \alpha \le \omega\}$ is a fundamental sequence of x_i in G_i .

Difinition. Let $(N_i, \mathfrak{B}_{\alpha}(i))$ $(1 \le i \le m)$ be normal in $(G, \mathfrak{B}_{\alpha})$. We say that $(G, \mathfrak{B}_{\alpha})$ decomposes into the direct product of its subgroups $(N_1, \mathfrak{B}_{\alpha}^{(1)}), ..., (N_m, \mathfrak{B}_{\alpha}^{(m)})$ if the following two conditions are fulfilled:

- (i) G can be decomposed into the algebraically direct product of its subgroups $N_1,...,N_m$;
- (ii) For any fundamental sequence $\{V_{\alpha}(x)\}$ of x in G and for each i=1,2,...,m, there exists a fundamental sequence $\{V_a^{(i)}(x_i)\}$ of x_i in N_i such that $V_a(x) = V_a^{(1)}(x_1) \cdots V_a^{(m)}(x_m)$ $(x = x_1 \cdots x_m)$.

Theorem A. We have the followings.

There is a mapping φ_i of N_i into G' and $N'_i (=\varphi_i(N_i))$ becomes a normal subgroup of G'. And in the sense of the ranked groups, we have

$$N_i \stackrel{i}{\cong} N_i', \stackrel{m}{\underset{i=1}{\prod}} \bigotimes N_i \cong \stackrel{m}{\underset{i=1}{\prod}} \bigotimes N_{i'}.$$

- $N_i{\cong}N_i', \underset{i=1}{\overset{m}{\coprod}}{\otimes}N_i{\cong} \underset{i=1}{\overset{m}{\boxtimes}}{\otimes}N_i'.$ RG can be decomposed into the algebraically direct product of its subgroups $N_1,...,N_m$.
- For each i=1,2,...,m, and any fundamental sequence $\{V_a^{(i)}(x'_i)\}$ of x'_i in N'_i , there exists a fundamental sequence $\{V_{\alpha}(x')\}\$ of $x'=x'_1\cdots x'_m$ in G' such that $V_{\alpha}^{(1)}(x'_1)\cdots V_{\alpha}^{(m)}(x'_m)\subseteq V_{\alpha}(x')$ for all α , $0 \le \alpha < \omega$.

Proof.

(1) ; Put $\varphi_i \colon N_i \ni x_i \mapsto (e_1, \dots, e_{i-1}, x_i, e_{i+1}, \dots, e_m) \in G'$ and $N'_i \equiv \varphi_i(N_i)$ $(1 \leqslant i \leqslant m)$.

Then N_i' is a normal subgroups of the abstract group G' and each φ_i is an algebraic isomorphism.

^{*} 数学, 講師, 一般教科。

^{** 1971}年4月,日本数学会年会(於東京都立大学)にて一部講演。

¹⁾ RG = ranked group.

²⁾ IS = induced ranked space.

By $\mathfrak{B}_{\alpha'}(N_i') \equiv \mathfrak{B}_{\alpha'} \cap N_i'$ ($0 \le \alpha < \omega$) N_i' becomes an induced space of G'. We will show that N_i' becomes a subspace of G'. For any V' $(x_i', N_i') \in \mathfrak{B}_{\alpha'}(N_i')$ we have

$$\begin{split} V' \; (x_{i}', N_{i}') = & N_{i}' \cap (V^{(1)}(e_{1}), \dots, V^{(t-1)}(e_{i-1}), V^{(t)}(x_{i}), V^{(t+1)}(e_{i+1}), \dots, V^{(m)}(e_{m})) \\ = & (e_{1}, \dots, e_{i-1}, N_{i}, e_{i+1}, \dots, e_{m}) \cap (V^{(1)}(e_{1}), \dots, V^{(i-1)}(e_{i-1}), V^{(t)}(x_{i}), V^{(t+1)}(e_{i+1}), \dots, V^{(m)}(e_{m})) \\ = & (e_{1} \cap V^{(1)}(e_{1}), \dots, e_{i-1} \cap V^{(i-1)}(e_{i-1}), N_{i} \cap V^{(i)}(x_{i}), e_{i+1} \cap V^{(t+1)}(e_{i+1}), \dots, e_{m} \cap V^{(m)}(e_{m})) \\ \equiv & V' \; (x'_{i}) \in \mathfrak{B}_{a}' \; (x'_{i}). \end{split}$$

Therefore, for every fundamental sequence $\{V'_r(x'_i, N'_i)\}_{\substack{0 \le r \le \omega \\ 0 \le r \le \omega}}$ of x'_i in N'_i , $\{V'_r(x'_i)\}$ becomes a fundamental sequence of x'_i in G'.

Now, since $V'_{\tau}(x'_i, N'_i) \subseteq N'_i$, for any fundamental sequence $\{V'_{\tau}(x'_i, N'_i)\}$, there exists a fundamental sequence $\{V'_{\tau}(x'_i)\}$ of x'_i in G' such that $V'_{\tau}(x'_i, N'_i) = N'_i \cap V'_{\tau}(x'_i, N'_i) = N'_i \cap V'_{\tau}(x'_i)$.

Thus N'_i becomes a ranked subspace of G'. Hence N'_i is normal in G'.

Next we will show that $N_i \cong N'_i$ and $\prod_{i=1}^m \bigotimes N_i \cong \prod_{i=1}^m \bigotimes N'_i$. It is clear that φ_i is a bijection. Let $V(x_i)$ be any element of $\mathfrak{B}_a^{(i)}(x_i)$. Since $V(x_i) \subseteq N_i$ we have $N_i \cap V(x_i) = V(x_i)$. Therefore we get

$$\varphi_i(N_i\cap V(x_i))=(e_1,...,e_{i-1},N_i\cap V(x_i),e_{i+1},...,e_m)\in \mathfrak{B}'_\alpha\cap N'_i\equiv \mathfrak{B}'_\alpha(N'_i)$$
 and

$$\varphi_i(N_i \cap V(x_i)) = (e_1, ..., e_{i-1}, V(x_i), e_{i+1}, ..., e_m) \in \mathfrak{B}'_{\alpha}(x') \text{ when } x' = (e_1, ..., e_{i-1}, x_i, e_{i+1}, ..., e_m).$$

Thus, for any fundamental sequence $\{V_{\tau}(x_{i})\}$ of x_{i} in N_{i} , $\{\varphi_{i}(V_{\tau}(x_{i}))\} \equiv \{(e_{1},...,e_{i-1},V_{\tau}(x_{i}),e_{t+1},...,e_{m})\}$ becomes a fundamental sequence of x'_{i} in N'_{i} . Thus φ_{i} is a rank preserving R-continuous mapping of N_{i} onto N'_{i} .

Now, let $\{V'_{\alpha}(x'_i, N'_i)\}$ be a fundamental sequence of $x'_i = (e_1, ..., e_{i-1}, x_i, e_{i+1}, ..., e_m)$ in N'_i . Since N'_i is a subspace of G' there is a fundamental sequence of x'_i in G', $\{V'_{\alpha}(x'_i)\}$, such that

 $V'_{\alpha}\left(x'_{i},N'_{i}\right)=N'_{i}\cap V'_{\alpha}\left(x'_{i}\right)\in \mathfrak{B}'_{\tau(\alpha)}\left(N'_{i}\right) \text{ for some } \gamma\left(\alpha\right),\ 0\leqslant\gamma\left(\alpha\right)<\omega.$

From $V'_{\alpha}(x'_{i}) = (V_{\alpha}^{(1)}(e_{1}), ..., V_{\alpha}^{(i-1)}(e_{i-1}), V_{\alpha}^{(i)}(x_{i}), V_{\alpha}^{(i+1)}(e_{i+1}), ..., V_{\alpha}^{(m)}(e_{m})$ and $V_{\alpha}^{(i)}(x_{i}) \subseteq N_{i}$ we have $V'_{\alpha}(x'_{i}, N'_{i}) = (e_{1}, ..., e_{i-1}, N_{i}, e_{i+1}, ..., e_{m}) \cap (V_{\alpha}^{(1)}(e_{1}), ..., V_{\alpha}^{(i-1)}(e_{i-1}), V_{\alpha}^{(i)}(x_{i}), V_{\alpha}^{(i+1)}(e_{i+1}), ..., V_{\alpha}^{(m)}(e_{m}))$

$$= (e_1,..., e_{i-1}, N_i \cap V_{\alpha^{(i)}}(x_i), e_{i+1},..., e_m)$$

= $(e_1,..., e_{i-1}, V_{\alpha^{(i)}}(x_i), e_{i+1},..., e_m)$.

Thus we get $\varphi^{-1}(V'_{\alpha}(x'_i, N'_i)) = V_{\alpha^{(i)}}(x_i)$.

Hence if $\{V'_{\alpha}(x'_{i},N'_{i})\}$ is a fundamental sequence of x'_{i} in N'_{i} then $\{\varphi_{i}^{-1}(V'_{\alpha}(x'_{i},N'_{i}))\}$, i.e., $\{V_{\alpha}^{(i)}(x_{i})\}$ becomes a fundamental sequence of $x_{i}=\varphi_{i}^{-1}(x'_{i})$ in N_{i} .

Therefore φ_i^{-1} is an R-continuous mapping. Thus φ_i is an isomorphism in the sense of ranked groups. Thus we have $N_i \cong N'_i$.

$$P_{\mathrm{ut}} \qquad \begin{array}{c} N_{1} \ni x_{1} \stackrel{\varphi_{1}}{\longrightarrow} x'_{1} \in N'_{1} \\ & \otimes & \vdots & \vdots & \vdots & \vdots \\ & \otimes & \varphi_{i} & \vdots & \vdots & \vdots \\ & \otimes & \varphi_{i} \longrightarrow x'_{i} \in N'_{i} \\ & \otimes & \vdots & \vdots & \vdots & \vdots \\ & \otimes & \varphi_{m} \ni x_{m} \stackrel{\varphi_{m}}{\longrightarrow} x'_{m} \in N'_{m} \end{array}$$

Then there exists a fundamental sequence of x'_i in N'_i , $\{V_{\alpha^{(i)'}}(x'_i)\}$, such that $\varphi_i(V_{\alpha^{(i)}}(x_i)) \subseteq V_{\alpha^{(i)'}}(x'_i)$ $(x'_i = \varphi_i(x_i), \ 0 \leqslant \alpha < \omega)$ for each $\{V_{\alpha^{(i)}}(x_i)\}$ (i. e., F. S. of x_i in N_i , $1 \leqslant i \leqslant m$). Thus there is a fundamental sequence of $(x'_1, ..., x'_m)$ in $N'_1 \otimes \cdots \otimes N'_m$, $\{(V_{\alpha^{(1)'}}(x'_1), ..., V_{\alpha^{(m)'}}(x'_m))\}$ such that $\varphi((V_{\alpha^{(1)}}(x_1), ..., V_{\alpha^{(m)}}(x_m)))$ $\subseteq (V_{\alpha^{(1)'}}(x'_1), ..., V_{\alpha^{(m)'}}(x'_m))\}$ (i.e., F. S. of $(x_1, ..., x_m)$ in $N_1 \otimes \cdots \otimes N_m$). Namely φ is R-continuous.

Analogously φ^{-1} becomes an R-continuous mapping. Thus φ is an isomorphism in the sense of ranked groups. Therefore we have $\prod_{i=0}^m \bigotimes N_i \cong \prod_{i=0}^m \bigotimes N_i'$.

(2) ; From abstract group theory we get this statement.

(3) ; Since there exists $\{V_{\alpha}^{(i)}(x'_{i})\}$ (i. e., F. S. of x'_{i} in G') such that $V_{\alpha}^{(i)'}(x'_{i}) = V_{\alpha}^{(i)}(x'_{i}) \cap N_{i}$ for each $\{V_{\alpha}^{(i)'}(x_{i}')\}$, there exists $\{V_{\alpha'}(x')\}$ (i. e., F. S. of $x' = x_{i}' \cdots x_{m'}$ in G') such that $V_{\alpha}^{(1)'}(x_{1}') \cdots V_{\alpha}^{(m)'}(x_{m'})$ $= (V_{\alpha}^{(1)}(x_{1}') \cap N_{1}) \cdots (V_{\alpha}^{(m)}(x'_{m}) \cap N_{m}) \subseteq V_{\alpha}^{(1)}(x_{1}') \cdots V_{\alpha}^{(m)}(x'_{m}) \subseteq V_{\alpha'}(x'_{1} \cdots x'_{m})$ in G'. (Q. E. D.)

Theorem B. Let G be the direct product decomposition of $N_1,...,N_m$ and G' the direct product group of $N_1,...,N_m$. Then there exists an isomorphism of the ranked group G' onto the ranked group G. And there exists an R-continuous identity mapping of the ranked group N_4 onto itself for each i=1,2,...,m.

Proof. Let $\{V_{\alpha'}(x')\} \equiv \{(V_{\alpha^{(1)}}(x_1),...,V_{\alpha^{(m)}}(x_m))\}\ (V'_{\alpha}(x') \in \mathfrak{B}'_{\tau}(x')$ for some γ , $0 \leqslant \gamma \leqslant \omega$ be any fundamental sequence of x' in G'.

Since G' is a direct product ranked group we have $V_{\alpha^{(i)}}(x_i) \in \mathfrak{B}^{(i)}_{r(\alpha)}(x^i)$ for some $\gamma(\alpha)$, $0 \leq \gamma(\alpha) < \omega$, and $\{V_{\alpha^{(i)}}(x_i)\}$ becomes a fundamental sequence of x_i in N_i .

Since G is the direct product decomposition of $N_1,...,N_m$, for every fundamental sequences $\{V_{\alpha}^{(1)}(x_1)\},...,\{V_{\alpha}^{(m)}(x_m)\}$ in the groups $N_1,...,N_m$, there exists a fundamental sequence of x' in G, $\{U_{\alpha}(x')\}$, such that $V_{\alpha}^{(1)}(x_1)\cdots V_{\alpha}^{(m)}(x_m) \subseteq U_{\alpha}(x')$, $x'=x_1\cdots x_m$ $(0 \leqslant \alpha \leqslant \omega)$. Thus we have $\varphi(V_{\alpha'}(x')) = V_{\alpha}^{(1)}(x_1)\cdots V_{\alpha}^{(m)}(x_m) \subseteq U_{\alpha}(x')$. Therefore φ is R-continuous.

Conversely, let $\{V_{\alpha}(x)\}\$ be any fundamental sequence of $x = x_1 \cdots x_m (x_i \in N_i)$ in G.

Since G is decomposed into $N_1,...,N_m$, there is a fundamental sequence of x_i in N_i , $\{V_{\alpha}^{(i)}(x_i)\}(1 \le i \le m)$, such that $0 \le \alpha < \omega$

$$V_{\alpha}(x) = V_{\alpha}^{(1)}(x_1) \cdots V_{\alpha}^{(m)}(x_m) = V_{\alpha}^{(1)}(x_1) \otimes \cdots \otimes V_{\alpha}^{(m)}(x_m).$$

Thus we have

$$\varphi^{-1}(V_{\alpha}(x)) = (V_{\alpha}^{(1)}(x_1), ..., V_{\alpha}^{(m)}(x_m)) \equiv V_{\alpha}'(x'), x' = (x_1, ..., x_m).$$

Since $\{V'_{\alpha}(x')\}$ becomes a fundamental sequence of x' in G', φ^{-1} is R-continuous.

Next, it is clear that $\varphi \circ \varphi_i$ is the identity mapping of N_i onto itself.

Moreover we have

$$\varphi\circ\varphi_{i}\left(V_{\alpha^{(i)}}\left(x_{i}\right)\right)=\varphi\left(\left(e_{1},...,e_{i-1},V_{\alpha^{(i)}}\left(x_{i}\right),e_{i+1},...,e_{m}\right)\right)=V_{\alpha^{(i)}}\left(x_{i}\right).$$

Thus $\varphi \circ \varphi_{\ell}$ is R-continuous. (Q. E. D.)

Theorem C. If G is the direct product decomposition of its subgroups $(N_1, \mathfrak{B}_{\alpha}^{(1)})$ and $(N_2, \mathfrak{B}_{\alpha}^{(2)})$ then we have $(G/N_1, \mathfrak{B}_{\alpha}/N_1) \cong (N_2, \mathfrak{B}_{\alpha}^{(2)})$.

Proof. Let $V(x_1, x_2) \in G$ and $\varphi: N_2 \ni x_2 \longmapsto x_2 N_1 \in G/N_1$. It is clear that φ becomes an algebraic isomorphism of N_2 onto G/N_1 .

Next, for $\forall V^{(2)}(x_2) \in \mathfrak{B}_{\beta}^{(2)}$, we have

$$V^{(2)}\left(x_{2}\right) \cdot N_{1} = V^{(2)}\left(x_{2}\right) \cdot V^{(1)}\left(x_{1}\right) N_{1} \; \left(\text{for some } V^{(1)}\left(x_{1}\right) \in \mathfrak{B}_{\alpha}{}^{(1)}\right)\right),$$

$$= V^{(1)}(x_1) \cdot V^{(2)}(x_2) \cdot N_1 \in \mathfrak{B}_r/N_1 \text{ (for } \gamma = \text{Min } (\alpha, \beta)).$$

Because abstract group G is the direct product of N_1 and N_2 .

Thus $\{\varphi(V_{\alpha}^{(2)}(x_2))\}$ becomes a fundamental sequence of $\varphi(x_2) = x_2N_1$ in G/N_1 for any fundamental sequence $\{V_{\alpha}^{(2)}(x_2)\}$ of x_2 in N_2 .

Therefore φ is R-continuous.

Conversely, we have

$$\varphi^{-1}\left(V_{\alpha}^{(1)}(x_1) \cdot V_{\alpha}^{(2)}(x_2) \cdot N_1\right) = \varphi^{-1}\left(V^{(2)}(x_2) \cdot N_1\right) = V_{\alpha}^{(2)}(x_2) \quad (0 \leqslant \alpha \leqslant \omega)$$

for any fundamental sequence $\{V_{\alpha}(x)\cdot N_1\} \equiv \{V_{\alpha}^{(1)}(x_1)\cdot V_{\alpha}^{(2)}(x_2)\cdot N_1\}$ of $x=x_1\,x_2$ in G/N_1 .

Namely, φ^{-1} is R-continuous.

Therefore φ becomes an isomorphism in the sense of ranked groups. (Q. E. D.)

§ 2. Convergences in the Ranked Group.

Let us consider two convergences, i. e., ortho-convergence and para-convergence in the ranked group.

Theorem. Let $(G, \mathfrak{B}_{\alpha})$ be a ranked group with indicator $\omega \geqslant \omega_0$. Suppose that

$$\mathfrak{B}_{\alpha}(a) = a \cdot \mathfrak{B}_{\alpha}(e) = \mathfrak{B}_{\alpha}(e) \cdot a \ (0 \leq V_{\alpha} \leq \omega, \ V_{\alpha} \in G)$$

and $\{p_{\alpha}V_{\alpha}(e)\}\ (p_{\alpha}\in G)$ is monotone decreasing iff $\{V_{\alpha}(e)\}$ is monotone decreasing.

Then we have

Then we have
$$\{ortho-lim \ p_{\alpha}\} \ni p \ in \ G \Leftrightarrow \{para-lim \ p_{\alpha}\} \ni p \ in \ G$$
 for any sequence $\{p_{\alpha}\} \inf_{\alpha} (G, \mathfrak{B}_{\alpha}).$

Remark. If $(G, \mathfrak{B}_{\alpha})$ is commutative we have always $a \cdot \mathfrak{B}_{\alpha}(e) = \mathfrak{B}_{\alpha}(e) \cdot a$ for each α , $0 \leqslant \alpha < \omega$, and any $a \in G$.

Proof of the theorem. Since $\{ortho-lim\ p_{\alpha}\} \ni p$ there exists a fundamental sequence $\{V_{\alpha}(p)\}$ such that $V_{\alpha}(p) \ni p_{\alpha}$ for each α , $0 \le \alpha < \omega$. As (G, \Re_{α}) is a ranked group there exists a fundamental sequence $\{V_{\alpha'}(p^{-1})\}\$ such that $p_{\alpha}^{-1}\in V_{\alpha}(p)^{-1}\subseteq V_{\alpha'}(p^{-1})$ for each $\alpha,\ 0\leqslant\alpha\leqslant\omega.$

On the other hand, there exist a fundamental sequence $\{U_{\alpha}(e)\}$ and a monotone decreasing sequence $\{U_{\alpha'}(p_{\alpha}^{-1})\}$ such that

$$e \in p_{\alpha}^{-1} \cdot V_{\alpha}(p) = p_{\alpha}^{-1} \cdot U_{\alpha}(e) \ p \ (\text{from} \ V_{\alpha}(p) \ni p_{\alpha} \ \text{and} \ \mathfrak{B}_{\alpha}(p) = p \cdot \mathfrak{B}_{\alpha}(e))$$

$$= U_{\alpha}'(p_{\alpha}^{-1}) \cdot p \ (U_{\alpha}'(p_{\alpha}^{-1}) \in \mathfrak{B}_{\tau(\alpha)}(p_{\alpha}^{-1}), \gamma(\alpha) \uparrow \omega \ \text{as} \ \alpha \uparrow \omega) \ (\text{from} \ \mathfrak{B}_{\alpha}(p) = p \cdot \mathfrak{B}_{\alpha}(e)) .$$

Thus we get $U_{\alpha'}(p_{\alpha^{-1}}) \ni p^{-1}$ for each α , $0 \le \alpha < \omega$.

Therefore we have

$$p = (p^{-1})^{-1} \in U_{\alpha'}(p_{\alpha}^{-1})^{-1} \subseteq U_{\alpha''}(p_{\alpha}) \quad (0 \leq \alpha \leq \omega)$$

for some monotone decreasing sequence $\{U_{\alpha}''(p_{\alpha})\}$ such that $U_{\alpha}''(p_{\alpha}) \in \mathfrak{B}_{\delta(\alpha)}(p_{\alpha})$, $\delta(\alpha) \uparrow \omega$ as $\alpha \uparrow \omega$.

Namely, we have $\{para-lim \ p_{\alpha}\} \ni p$.

Conversely suppose that $\{para-lim \ p_{\alpha}\} \ni p$. Since there exists a monotone decreasing sequence $\{V_{\alpha}(p_{\alpha})\}\$ such that $V_{\alpha}(p_{\alpha})\ni p\ \&\ V_{\alpha}(p_{\alpha})\in \mathfrak{B}_{\varepsilon(\alpha)}(p_{\alpha})\$ for each $\alpha,\ 0\leqslant \alpha\leqslant \omega,\$ and $\varepsilon(\alpha)\uparrow\omega$ as $\alpha\uparrow\omega,\$ we get $p \in V_{\alpha}(p_{\alpha}) = p_{\alpha} \cdot V_{\alpha}'(e) \quad (0 \leq \alpha \leq \omega)$

for some fundamental sequence $\{V_{\alpha'}(e)\}$ in $(G, \mathfrak{B}_{\alpha})$. Thus there is a point $p_{\alpha'} \in V_{\alpha'}(e)$ such that $p_{\alpha} \cdot p_{\alpha'} = p$ for each α , $0 \le \alpha < \omega$.

Thus there exist two fundamental sequences $\{U_{\alpha'}(e)\}\$ and $\{U_{\alpha}(p)\}\$ such that

$$p_{\alpha} = p \cdot p'_{\alpha}^{-1} \in p \cdot V_{\alpha'}(e)^{-1} \subseteq p \cdot U_{\alpha'}(e) = U_{\alpha}(p)$$

for each α , $0 \le \alpha < \omega$. Therefore we get $\{ortho-lim \ p_{\alpha}\} \ni p$.

This completes the proof.

§ 3. Linear Ranked Spaces.

We shall introduce linear ranked spaces as certain generalized normed linear spaces.

Let E be a linear space over real or complex field K and also a ranked space with indicator ω_0 .

We now introduce following notations:

$$E \equiv \{E, \Re_n\}$$
 (i. e., a ranked space);
 \emptyset_0
 $\Re \equiv \bigcup \Re_n$;
 $\|x\|_{v} \equiv \text{ the rank of } V(x) \in \Re;$
 $\{u_n(x)\} \equiv \text{ a fundamental sequence of } x \text{ in } E;$
 $\Im (x) \equiv \text{ all of fundamental sequences with respect to } x \text{ in } E.$

Suppose that E satisfies the following condition (I) or (II):

(I) (i) For $\forall \lambda \in K$ and $\forall V \in \mathfrak{B}(x)$, there is a $W \in \mathfrak{B}(\lambda x)$ such that

$$\lambda V \subseteq W \& \|\lambda x\|_{\mathbf{w}} = (\frac{\|x\|_{\mathbf{v}}}{|\lambda|})$$

(above [] is the Gaussian symbol);

(ii) For $VU \in \mathfrak{B}(x)$ and $VV \in \mathfrak{B}(y)$, there is a $W \in \mathfrak{B}(x+y)$ such that

$$U+V\subseteq W \& ||x+y|| \le Min. \{\left(\frac{||x||}{2}\right), \left(\frac{||y||}{2}\right)\}$$

(thus $||x+y|| \le Min$. { $||x||_U$, $||y||_V$ }).

(II) (1°) For $\forall \lambda \in K$ and $\forall \{u_n(x)\} \in \mathfrak{F}(x)$, there is a $\{w_n(\lambda x)\} \in \mathfrak{F}(\lambda x)$ such that

$$\lambda \cdot u_n(x) \subseteq w_n(\lambda x) \& \| \lambda x \|_{w_n} = \left[\frac{\| x \|_{u_n}}{|\lambda|} \right]$$

for all n, $0 \le n \le \omega_0$;

(2°) For $V\{u_n(x)\}\in\mathfrak{F}(x)$ and $V\{v_n(y)\}\in\mathfrak{F}(y)$, there is a $\{w_n(x+y)\}\in\mathfrak{F}(x+y)$ such that

$$u_n(x) + v_n(y) \subseteq w_n(x+y) \ll ||x+y||_{w_n} \leq Min. \left\{ \left(\frac{||x|||_{u_n}}{2} \right), \left(\frac{||y||_{v_n}}{2} \right) \right\}$$

for all n, $0 \le n \le \omega_0$.

Definition. We call above E a linear ranked space over K.

Remark 1. Above E becomes a linear ranked space in the sense of [14, p. 58].

Remark 2. From the axiom (a) we have following statements:

- (1) For $VU \in \mathfrak{B}(x)$ there exists $V \in \mathfrak{B}(x)$ such that $U \supseteq V$ and $||x||_{U} \leq ||x||_{V} < \omega_{0}$.
- (2) For $V\{u_n(x)\} \in \mathfrak{F}(x)$ there exists $\{v_n(x)\} \in \mathfrak{F}(x)$ such that $u_n(x) \supseteq v_n(x) \& \|x\|_{u_n} \le \|x\|_{v_n} < \omega_0$ for all $n, 0 \le n < \omega_0$.

Remark 3. $||x||_{v} \ge 0$ for all $V \in \mathfrak{B}(x)$. $||x||_{v=\{x\} (one\ point\ set)} \ge \omega_{0}$. $\left(\frac{1}{||\lambda||}\right) = \omega_{0}$ for $\lambda = 0$.

Examples of above spaces.

Type (I); (1) (Semi-) Normed space $(E, \|\cdot\|)$.

Let $v(n;0) = \{x \in E; ||x|| < \frac{1}{n}\}, \ \mathfrak{B}_n(0) = \{v(n;0)\} \text{ (one set family) and let } \mathfrak{B}_0 = \{E\}.$

(2) Countably normed space $(\Phi, \{ \| \cdot \|_p \}_{p=1,2,...})$.

Let $v(n; 0) = \{ \varphi \in \Phi : \| \varphi_n \| < \frac{1}{n} \}, \mathfrak{R}_n(0) = \{ v(n; 0) \} \text{ (one set family) and let } \mathfrak{B}_0 = \{ \Phi \}.$

- (3) Countably normed space as linear Metric Space.
- I.M. Gel'fand [8, p. 21] introduced a metric in a countably normed space. A metric space is considered as a ranked space with depth ω_0 .
 - (4) Perfect space. (See Gel'fand [8, p. 54]).
 - (5) Dual space of countably normed space $(\Phi^*, \{ \| \cdot \| *_p \}_{p=1,2,...})$.

Let $v(n, p; 0) = \{ f \in \mathcal{O}_p^*; \| f \|^* p < \frac{1}{n} \}, \mathfrak{B}_n(0) = \{ v(n, p; 0); p = 1, 2, \dots \} \text{ and let } \mathfrak{B}_0 = \{ \mathcal{O}^* \}.$

(6) L. Schwartz's distribution space D.

Let $v(n, k; 0) = \{ \varphi \in D ; \text{Car. } \varphi \subseteq [-k, k], \max_{0 \le l \le n} \sup_{x} |\varphi^{(l)}| \le \frac{1}{n} \} \ (k > 0) \text{ and let } \Re_n(0) = \{ v(n, k; 0); \forall k > 0 \}.$

(7) Dual space D' of space D.

Let $v(n; 0) \equiv v(n; 0, \{m_1, ..., m_n\}) = \bigcap_{j=1}^n U_{n,j}$ where arbitary integers $m_1 \leqslant m_2 \leqslant \cdots \leqslant m_n$ and

 $U_{nj} = \{\tau \in D'; \sup_{\varphi \in v(m_j; \ 0,1,K_j)} | \tau(\varphi)| \leq \frac{1}{n}\} \text{ and let } \mathfrak{B}_n(0) = \text{ all of above } v(n;0).$

Type (II); (i) All examples in type (I).

(ii) Union space of Countably normed spaces. $\Phi^{(w)}$.

Let $\Phi^{(m)} = \bigcup_{m=1}^{\infty} \Phi^{(m)}$ be the union space of countably normed spaces $\Phi^{(m)}(m=1,2,\cdots)$ where

 $\phi^{(1)} \subset \phi^{(2)} \subset \cdots \subset \phi^{(m)} \subset \cdots \text{ & the systems } \{ \| \cdot \|_{p^{(m)}} \} \text{ and } \{ \| \cdot \|_{p^{(m+1)}} \} \text{ are equivalent in } \phi^{(m)}.$

And put $v(n, m; 0) = \{ \varphi \in \Phi^{(m)} ; \| \varphi \| n^{(m)} < \frac{1}{n} \}, \mathfrak{B}_n(0) = \{ v(n, m; 0) | ; m = 1, 2, \dots \} \text{ for } n \ge 1,$ and $\mathfrak{B}_0 = \{ \Phi^{(m)} \},$

(iii) Conjugate space Φ'.

Let Φ' be the conjugate space to a countably normed space Φ . Then we have $\Phi' = \bigcup_{p=1}^{\infty} \Phi'_{(p)}$ by Gel'fand [8, p. 36].

(iv) Nuclear Space in the sense of Y. Nagakura. See [7; II].

§ 4. A theorem on locally convex linear topological spaces.

1. We consider again linear ranked space in the sense of [14, p. 58].

Theorem. Locally convex linear topological space S becomes a linear ranked space.

Corollary 1. Conjugate space S' to a locally convex linear topological space S is a linear ranked space.

Corollary 2. Let $S_1 \subset S_2 \subset \cdots \subset S_k \subset \cdots$ be an increasing sequence of locally convex linear topological spaces S_k $(k=1,2,\cdots)$. Then the inductive limit space³⁾ $S = \bigcup_{k=1}^{\infty} S_k$ becomes a linear ranked space. (Thus the conjugate space to S is so.)

Proof. Suppose that the locally convex topology on above linear space S is defined by a system of semi-norms $\{p_{\alpha}(x)\}_{\alpha \in A}$ on S. Let

$$v(n, B; 0) = \{x; \alpha \in B \Longrightarrow p_{\alpha}(x) < \frac{1}{n}\}$$
 for any finite subset B of A

and let

$$\mathfrak{B}_{n}\left(0\right) = \left\{v\left(n, B; 0\right) ; VB \subseteq A\right\}.$$

Then we get above theorem.

Since S' is a locally convex space, we get corollary 1.

Finally, we shall prove corollary 2. Let $p_{\alpha}(x)$ be a semi-norm on S such that, by the topology on S_k , $p_{\alpha}(x)$ is continuous on S_k for each $k=1,2,\cdots$. Since all of above semi-norms $\{p_{\alpha}(x)\}$ defines the locally convex topology on S, S is a locally convex linear topological space. Thus we get corollary 2. (Q, E, D, P)

2. Examples of such linear ranked spaces.

- (1) D and its Fourier transformation \widehat{D} .
- Fréchet spaces (thus Banach spaces).
- (3) LF-spaces (i. e., the inductive limit space of Fréchet spaces).
- (4) Bornological spaces and the inductive limit space of Bornological spaces.
- (5) Barrelled spaces and the inductive limit space of Barrelled spaces.
- (6) Montel spaces and the inductive limit space of Montel spaces.
- (7) The conjugate spaces to above spaces.
- (8) L. Hörmander's space $\mathcal{F}(\Omega) = \bigcap_{i \in I} \stackrel{loc}{\mathscr{C}} p_{i,k_i}(\Omega)$.

§ 5. Linear Forms and Extension Theorem.

Let R and S be two linear spaces over the same field Φ (of real or complex numbers). The mapping f of R into S is called *linear* if

$$f(x+y) = f(x) + f(y), f(\lambda x) = \lambda f(x),$$

for all $x \in R$, $y \in R$ and $\lambda \in \Phi$. The linear mapping f is one-to-one iff $f^{-1}(0) = \{0\}$; in general $f^{-1}(0)$ is a linear subspace of R. Moreover in the set L of all linear mappings of R into S, addition and multiplication by scalars can be defined by

$$(f+g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda (f(x));$$

then L becomes a linear space over Φ .

Proposition 1. When R and S are both linear ranked spaces, the R-continuous linear mappings

^{3) [11],} p. 27.

^{4) [12],} p. 77.

of R into S form a linear subspace of L.

Because the R-continuity of f and g implies the R-continuity of f+g and λf .

Proposition 2. If R and S are (homegeneous) linear ranked spaces and f is a linear mapping of R into S, then f is R-continuous on R iff f is R-continuous at the origin.

Proof. If f is R-continuous at 0, and $\{U_n(0)\}$ is any fundamental sequence of 0 in R, there is a fundamental sequence $\{V_n(0)\}\$ of 0 in S such that $f(U_n(0)) \subseteq V_n(0)$ for every $n, 0 \le n < \omega_0$. Then for each point a of R, $f(a+U_n(0))=f(a)+f(U_n(0))\subseteq f(a)+V_n(0)$, and so f is R-continuous at a.

Definition. If R is a linear space over Φ , a linear mapping of R into the scalar field Φ itself is called a linear form (or linear functional) on R. A linear form f on a linear ranked space R is called continuous at $x \in R$ if

$$\{\lim x_{\alpha}\}\ni x \text{ in } R \Longrightarrow \lim f(x_{\alpha}) = x \text{ in } \Phi$$

 $\{\lim_{\sigma} x_{\alpha}\} \ni x \text{ in } R \Longrightarrow \lim_{\alpha} f(x_{\alpha}) = x \text{ in } \Phi.$ **Remark.** If R is a normed linear space then we have

$$\{lim \ x_{\alpha}\} \ni x \text{ in } R \Leftrightarrow lim \parallel x_{\alpha} - x \parallel = 0 \text{ in } R.$$

Proposition 3. If a linear form f on a (homogeneous) linear ranked space R is continuous at 0, then f is continuous on the whole of R.

Proof. If $\{\lim x_n\} \ni x$ then there is a fundamental sequence $\{v_n(0) + x\}$ of x such that $v_n(0) + x \ni x_n$ for each n, $0 \le n \le \omega_0$. Then $\{v_n(0)\}$ becomes a fundamental sequence of 0 and we have $v_n(0) \ni x_n - x$ for each n, $0 \le n < \omega_0$. Thus

$$f(x_n) - f(x) = f(x_n - x) \longrightarrow 0$$
.

Proposition 4. Let f and g be two continuous linear forms on R and X an r-dense subset of R. When f(x) = g(x) for any $x \in X$, we have f = g on R.

Proof. For any $x \in R$ there is a sequence $\{x_n\}$ such that $\{lim \ x_n\} \ni x$ and $x_n \in X$.

Since f and g are continuous we get f(x) = g(x) from $f(x_n) = g(x_n)$.

From linear topological space theory5), we have the Hahn-Banach theorem, i. e.,

Theorem (Hahn-Banach extension theorem). Suppose that p(x) is a positive homogeneous subadditive function on a real linear space R. If a linear form q(z), defined on a linear subspace X, satisfies

$$q(z) \leq p(z)$$
 for $z \in X$

then q(z) can be extended to a linear form ℓ , defined on the whole of R, which satisfies

$$\ell x \leq p(x)$$
 for $x \in R$.

If R is a linear ranked space and p(x) is continuous at 0, then ℓ is also continuous.

References

- [1] K. Kunugi: Sur la méthode des espaces rangés. I, II. Proc. Japan Acad., 42 (1966), 318-322, 549-554.
- [2] ----: Sur les Espaces Complets et Régulièrement Complets, I-III. Ibid., 30 (1954), 553-556, 912-916; 31 (1955), 49-53
- [3] H. Nakano: Über die Charakterisieurung des allgemeinen C-Raum. I, II. Proc. Imp. Acad. Tokyo, **17** (1941), 301–307; **18** (1942), 208–286.
- [4] ----: Linear topologies on semi-ordered linear spaces, Jour. Fac. Sci. Hokkaido Univ. 12 (1953), 87-104.
- [5] M. Washihara: On Ranked Spaces and Linearity. I, II. Proc. Japan Acad., 43 (1967), 584-589; 45 (1969), 238-242.
- -: The Continuity and the Boundedness of Linear Functionals on Linear Ranked Spaces. [6]

^{5) [9],} p. 190

- Ibid., 43 (1967), 590-593.
- [7] Y. Nagakura: The theory of nuclear spaces treated by the method of ranked space. I, II. Ibid., 47 (1971), 337-341, 342-345.
- [8] I. M. Gel'fand and G. E. Shilov: Generalized Functions, Vol. 2, Academic Press, New York (1968).
- [9] G. Köthe: Topological Vector Spaces I, Springer-Verlag. Berlin (1969).
- [10] A. P. Robertson & W. J. Robertson: Topological Vector Spaces, Cambridge University Press (1966).
- [11] T. Yamanaka: Topological Linear Spaces and Generalized Functions, Japan (1966).
- [12] L. Hörmander: Linear Partial Differential Operators, Springer-Verlag. Berlin (1969).
- [13] T. Shintani: A direct product decomposition of the Ranked Group. 日本数学会年会講演 (1971).
- [14] ----: On Generalized Continuous Groups I, Mem. Tomakomai Tech. College, 6 (1971), 45-60.