On Generalized Continuous Groups T1T --93 —

On Generalized Continuous Groups 111

By
Toshitada SHINTANT*

Tomakomai Technical College
(Received January 10, 1973)

Synopsis.

In this paper we will study an open problem . of the closed-graph theorem offered by Alexander
Grothendieck. We will show that the Linear Ranked Space satisfies his conjecture. A purpose of such
study is to develope more general and unified functional analysis on wide spaces without metric or norm,
We shall be able to develope such analysis on a Linear Ranked Space as a generalization of Banach space
theory. For instance, we can extend the most part of results in ([1]) or (£2]) or ([200) by such methods

of ranked spaces. Moreovr every space considered for the conjecture has a structure as a linear ranked space,

§ 1. Introduction.**

Historically, the Linear Ranked Space has been introduced independently by H. Okano ([7]),
M. Washihara ([16]), M. Yamaguchi ([197) and T. Shintani ([12]). The author’s studies ([12],[13]) are
most general. These studies are applying to the theories of generalized integrals, of partial differential
equations as an extension of L. Hérmander’s theory, of nuclear spaces as an extension of I. M. Gel’fand’s
theory, and of the others by many mathematicians ({67, [18], [9],..., etc.).

Now, let E and F be two topological vector spaces. Let us consider a linear mapping f from a departure
space E into an arrival space F. Then if the graph of f is closed then f is continuous under convenient
assumption on E and F.

Conjecture (A. Grothendieck ([3])). Let E be a Fréchet space. Then is there a class F of arrival

topological vector spaces with the following good properties?

(i) Every space FETF is wider than cvery Fréchet space.

(ii)  The class ‘F is closed by the following operations :
1) The image of FEF by a continuous linear mapping belongs to 7.
2) The closed subspace of FET bhelongs to F.
3) The prb(lud space F={’/Fn of spaces {Fy }ncl‘]' belongs to F.

B

4) The inductive limit of spaces {Fy} CTF belongs to F.
n=1,2,...

(iii)  For E and FEF the closed-graph theorem holds.

~

These properties are fundamental and essential in the theory of Hilbert spaces or Banach spaces.
Recently, this conjecture is studying on wider spaces E and F by A. Martineau ([8]), L. Schwartz ([11]),
W. Stowiskowski ([147), M. De Wilde-H. G. Garnir (T11), M. Nakamura ([10]) and many mathematicians,

§ 2. Notations and Some properties of Linear Ranked Spaces.***

For each point x of a ranked space Ba(x) denotes the system of all neighborhoods of x with rank a, F(x)

*HCE, A, —HH.
*#* Throughout this paper we shall use the same terminology that is introduced in [5] and [12].
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the set of all fundamental sequences of x,
Definition 1. ([5], [123). Let E and F be two ranked spaces with same indicator m > .

(1) A mapping f: E-—F is said to be r-continuous at a point x in E if
in

{lim xa}3x in Ex{lim f(xa)}Df(x) in F.
a I

(2) A mapping f - E-"‘—»F is said to be R-continuous at a point x in E i for any fundamental
sequence {Va(x)} of x in E chre is a fundamental sequence {U.(f(x))} of f(x) in F such that
S (Va()) S Up(f(x)) for all a, 0<a<lw.
Every R-continuous mapping is 7—continuous, but the converse is not always true.
Definitfon 2. ([127, [16]). A linear space E over the real or complex field @ is called a linear ranked

space over @ if this set £ is a ranked space with indicator we and if the following conditions are fulfilled :
1)

(1)  The mapping (x, y) ——x+y of EX[E into E is R-continuous.
(2)  For any {up(x)}€ F(x) and any sequence {2,}C @ with limit 1, =4, there isa {V,(Ax)}E€ F(Qx)
such that 2n + un (XS V,(Ax) for all n, 0K nwo.

Hereafter we assume that every linear ranked space {E, 8,} is homogeneous, namely, every neighborhood
of x in E is written in the form of” x+a neighborhood of o in E" and 8,(x)=%,+ {x} (¥n, 0:<nwy)

holds for each point x in E.
rs®
Definition 3. ([12]). (i) A subset H of E becomes a ranked space by the induced rank from E,

1. e., by the relations ¥, (x; H)=8,(x)NH (x€H) and
def. i
{Un(DYEF(x; H)QUp(x) = un(0)NH ({ua(x)}EF(x)).

Such H is called a subspace of RSE,

Lrs S LRS
(i1) A subset M of E is called a subspace (resp. a closed subspace) of E if M is a vector

subspace (resp. an r—closed se“t) and also a vector subspace) of E.
Proposition 1. Let E be a linear ranked space and H an its vector subspace.
Then we have the followings :
(1) H is a subspace of E.
(2) el (H) is a subspace of H. Hence a closed subspace of E is a linear ranked space.
Proof. (1). HCE is a ranked space by the induced rank from E. For any {Un(x)}, {V.(»)}E€F(H),
we have
Un(D)+ Vi) =un(ONH+v,()NH (un(x)}, {va(M}IEF)
=(un(X)+va(MDINH
Sw,(x+3NH
SWalx+3) (F{wa (+DYEF, tn (MD+va (NS wa(x+y) 5 {Walx+y}EFUD).
Moreover for any {1,}C® (Ap—>2) and any {Un(x)}EF(H) there exists {Vn (Ax)}€F(H) such that
A cUn(D)CS 2y » (n(DONHC An » ty (DNHES Fua(AX)NH=V,(Ax). Hence HS F is a linear ranked
space.
(2). ¢l (H) is a ranked space by the induced rank from E. Moreover we have the following facts :
vy, Vy€ch, () x+y€cl, (.
VIED, Vx€cl,(H) = Axecl, (H).
Thus ¢l () is a vector subspace of E. Hence ¢l () is a lincar ranked space. (Q.E.D.)

Proposition 2. Let E and F be two linear ranked spaces over @ and let a mapping

1) See [12].
2) RS=Ranked Space.
3) LRS=Linear Ranked Space.
RS RS
4) M(ZSE) is called an r—closed set in E if cl, (M)=M,
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LRS LRS
[ E —— F be r-continuwous. Then the image f(E) of E is a linear ranked space.

Because f(E) is a ranked space by the induced rank from F and also fF(E) is a vector space,
Hence f(E) is a linear ranked space by Proposition 1, (.

@ LES

Proposition 3. Let {I;, ©,} (2€.1) he a svstem of (vector) subspaces of E.

Then we have the followings :
. LRS
(€)) HEQ H, is a subspace of E.
€4

@ If H=UH, is a vector subspace of E then H is a linear ranked space.
AEL
In fact, H becomes a linear ranked space by the induced rank of E or by the relation %‘\nEﬂ%n“) (neN)D
i€t

By B, EZH%,,W (M€EN) H is a linear ranked space.

Definition 4. ([12]) Let {E,, B, (x)} (x;€EE;, 2€4, 0<a<<w) be a system of ranked spaces
with same indicator @>wo. Then the direct product set E=ITE; is a ranked space by the following
relations : !

‘Ba(-*)f{glv‘“ () | VO (x) €8a, @ (a<ar<w) & inf (az; A€ =a} (X=(v\'xi)EA€ E, 0<a<w)
and

(Va(0)}EF(x; Eﬁ'é?v,,<x)scvawm)ze_,& (Ve (x)} € F(xi: Ep) (AEA).
Such space E is called the direct product ranked space of ranked spaces {E,} (A€1).

o0

Proposition 4. The direct product space E=1]En of linear ranked spaces {En} (n€N) over @
is a linear ranked space over O. "
Proof. Since every E, is a vector space, E=[1'”E,, is a vector space. And E is also a ranked space
by the product rank. "
D For y{um (0}, , V{vn™ (O}, €F(0; Ey) there exists {wm (O}, €F(0; En) such that
Um ™ () +vm™ (0) S wm (0) for Vm, Va€N.
Hence we have

[7(Um(")(o)'l‘vm(")(O),)C_:ﬁ:wm(")(o) (VmEN).
1 n=

n=
Thus the addition in E is R-continuous.

2) For V{lm<")}mcq)(lm<")—>0) and V{ttm<")(0)}m€F(O s E3) there exists {vm<”)(0)}mEF(0;En)
such that
Am™  um ™ () S vn™ (0) (Ym, Yn€N).
Hence we have ﬁ(l,,,‘") . uM"’(O))EﬁW:‘"’(O) (ymeN).
n -1 n=1
Therefore Ez;; E, is a linear ranked space over ¢. (Q.E.D.)

n=1
Definition 5. In the direct product E=IE}; of vector spaces Ex (k€ N) over @ if a vector space
)3

E (S E) is generated by UEj then £ is called the direct sum of vector spaces Ex(K€ N) and it is denoted by
s

NMEE DIBER is called the direct sum ("}‘R‘Ek (REN) il every Et (REN) is a linear ranked space over @,
‘ Prop/;sitiOll 5 IS Ei (REN) is a svstem of linear ranked spaces over ® then SYPE is a linear
ranked space over . £

Proof. FE(SE) is a vector space and a subspace ofnsl'i'.
Let

Eav:?s(xﬁ) and Vn&)s(v,mm(xk)gqﬁ {Vn® )} € F (res Ex), {Va(D}EF(; EY).
N ne! ng.

5) IV denotes the set of all natuyral nymbers,
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For V{I‘lvn(:')}, V{‘;n(j\")}e F(Tf) we have

2\(’n (‘},)'i‘;n (_;") =(un®(x))N E-}- (ra®(¥)) N E
rEN N

= (o) + o @) N E
< (Fun®(xp+y)) N E ({wn®(xp+y)}YEF (xp+ vy E).
LEN

Morover for any {ip}C® (A,—2) and any {ﬁ,,(})}EF(:\U‘.‘ EY we have
Zu s n(DE Qo un®(x)) NES(Gon®@ - i) NESo ()€ F(E) ({2a®(Axi)} € FIEL).
A{. keEN ned

Hence iE is a linear ranked space over @, (Q.E.D)

Definition 6. Let E=FE/M be the quotient vector space over @ by a vector subspace M of a given
vector space E over @. L is called the quotient linear ranked space over ® by M if E is a linear
ranked space over ®.

Proposition 6. Let E be a linear ranked space over ® and M a vector subspace of E. Then the
quotient vector space E=E!M is a linear ranked space over .

Proof. By the following relations :

B (37 ) (€D'ST(HI=(at M| a€V(x)} (x€ and fix x€E)
and
‘iﬁ.,,(\')‘Elhe set of all neighborhoods of & with rank e < a<lm)
I is a linear ranked space over @. (Q.E.D.)

Definition 7. Let {E,} be a sequence ol ranked spaces with same indicator w>wo. Suppose that
n=1,2

beoe

RS RS o
it satisfies the following condition: En is a closed subspaces of Ensi for each n, n€N. Tt E=Uf3n
n=
is a ranked space then such ranked space E is called the inductive limit of ranked spaces En (7=1,2,3,...)
and it is denoted by E=lim E,.

Proposition 7. The inductive limit E=lim Ey of linear ranked spaces over @ E|CE-C-- CEpCo-
—_—

is a linear ranked space over .
Proof. We set En={En, Bn™} (nEN) and U (0)e B () (71, 0<I<wo). Since E, is
a closed subspace of En 1 there exists U +(0) € By +1(0) such that U™ (0)=E,NUMD(0).
Inductively ‘we have
FUGHD(0) € B +1(0) such that UG (0)=EjNUYH(0) for all j=n.
By the relation

def.
UOZAUD0) & B0)DUD) & BV (Vizn)

izn

def.
{Un(0)}E€F(E) (Un (O)Epﬂ Un9(0)) @ {Un (O} E F(EH) (Vizn),
>n
we can show that E becomes a ranked space with indicator wq :

(A) U)30 is clear.
(BY  For any U(0) and V(0) we have
U NV ) = (AUD ) N AV O)) (n<m)
=m

J=n 7

and

20 WP AVP(0)

SAWDO)=FWO) (UDO)NVG ()2 WD (), T WP O0)EBEN.
Jj=n
(¢) Since each E, satisfies the axiom (a) there exists m, I<m<wo, such that

UDO)27V0) & V(0) €Bn I (0).

6) ‘I.ﬁ(")EL]?«(‘).
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Hence if we set V(0)=nNVU(0) then .
jizn
U2V & V)EBL(0) Usmw)).
Thus E satisfies the axiom (a).

Hence E=UF ix a ranked space with indicator wg. Thus lim I, is a ranked space with indicator wg.
n -1 —

Since every E, (€ N) is a vector space, UIL‘,, Is a veclor space,
n 1
For any {Ux (0)}, {Va€0)}E€ F(E) we have, for every n€N,
Un (0)+Vu (0)= nUn(j)(O)+ n Vn(j) (0) (k>kl)
Iz izk!
SNWURI(0)+ Va2 (0))
Jk
EJQ/W:I,‘/)(O)EEIWn (0) (F{WP(ODYEF(E), UG (0)+ V()T Wr(0))
and {W,(O}EF(E).
Moreover for any {2,}C®(2,->0) and any {U,(0)} € F(E) we have, for every n€ N,
An s Un (0)=2n « (AU =Ny » Up(0)
FEZS Jzk
_C‘ﬂ/LWnU)(O)EWn(O) (FA{WrP(OYEF(ES), An + Un92(0) S Wr32(0))
Izk
and {W, (0)}EF(E).
Hence _1_[)11 Eyn is a linear ranked space over @. (Q.E.D.)
Definition 8. Let A be an ordered set and {£;, B,D} (A€4) a system of ranked spaces with
same indicator. If an R-continuous mapping ©1,.: E.-—FE,; is defined for every 2, p€d (A<p) and if
A p<vDPsp + P =21, holds, then ({E;, Ba®}) is called the projective system of ranked spaces

RS
{Es, B} (A€4). Let E¥=[l E; be the direct product ranked space of E; (A€ A4) and set
i€

E={x€E*| x= (,nl) ;%lich that =%, (x,) if 2<p}.
C.

RS
Then E(S E*) becomes a subspace of E* by the induced rank. Such ranked space {E, 8B,} is called the
projective limit of ({E;, 8,®}) and it is denoted by (FE, ) =lim (E,, Pau) or E=1Ilim E;.
Since pry: E*——E, is an R-continuous mapping, a mapping

Pu
E—‘*Eﬂ

O "gtn,n

“E,
is also R-continuous. Such ¢, : E——FE, is called the canonical mapping. From the definition we have
2P Pu=9;. ‘

Definition 9. (i) A sequence {xn} émE is called an r-Cauchy sequence in E if there exists
a fundamental sequence {V, (0)} € F(0) vand if, for each NEN, we have m,n>N xm— 2 € Var (0).

LRS
(i) E is said to be r-complete if every r-Cauchy sequence in E is r-convergent in k.

90).:-[))’1 ] E: E

B, o)

Remark. In a linear ranked space, every r-convergent sequence is an r-Cauchy sequence, hut the

converse is not always true,

§ 3. Generalized Closed Graph Theorem ###*

Let E and F be two homogencous linear ranked spaces over @, In this section we suppose that every
@, 7
VeB (0; F)YZUBL(0; F) is r-closed and convex.

70

FEE197354T] . AARBF RS (RVHRE) (2Tl
7) We use only the fact %—V+ T}—V:’_:V for YVEB(O; F).
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Condition (). ZVE‘BI, ; ](0) holds for any 2€® and any VEB, (0) (0 r<Tmo).

Theorem 1. (Closed Grapl{ Theorem). A linear mapping f of a linear ranked space E into an
r—complete linear ranked space F satisfying the condition (5% ;”1'3 r—continuous and T-continuous provided
(i) the graph of f is r-closed inLRSE x F,
(ii)  for each neighborhood V(0) of in F the r—closure clr (f71(V(0))) is a neighborhood
of 01in E,9 )and
(i) (a*) for each neighborhood v(0) of 0 in E and each {vn (0)} EF (0; E) there exists an
index m€ N such that vm (O)EU(O).IO)
Proof. (I). We begin by showing that for each V(0)€®8(0) we have cl,—(f"(%V(())))Sf"(V(O)).

For any x€cl, (f! (-% V(0))) there exists an r~Cauchy sequence {y,}CF such that

yo=0 and xE€cl, (S (yn+Ur)) for all n, 0K nwo (UoE-;*V(O). U,,E]E,,Uo).
We will show this by mathematical induction. For #=0 this is clear, Suppose that y, is defined for each
7n>=0. Then we have

x€cly (/1 nt Un)YE S nt U el (71 (5 Un).
Hence there exists a point x' in E such that

FGDEatUn & x€x+el, (S5 U,
Now,

el (G U=l (4 7 (G U S el (1 )+ 171 (G U ) S el (7 (F )+ U,

Set yn-1=f(a"). Then we have

Yu 1€ yn+Upn and x€cly (f 1 (¥ns1+Un+))) for all n, 0<n<wo.
Now set Wy=y, .1+ Us for all n, 0<n<wo. Then we have

Wiir=E -2+ Un 1 S (1 +Un+1)+Un 1 (By ¥n2€yns1+Un+1)

w1+ (G Un 5 Un)
Cyp 1+ Un = Wy (Because Uy is convex).?

Thus for all n, 0<n<wy, we have

Wa2DWair & Wadyn-1, Yaie, Yo idpee .
From Wy2W,+ (Vn, 0<n<wo) we get

Vi—¥n1€Un—=Un=1 (Wi>n) and ¥p41—3;€Un+1—Un (Vi>n).
Thus there exists a {Un'} € F(0) such that

Yi=yi=i=Yns )+ a1 = ¥D) € Un—Un+ )+ (Un+1—Un)SUx' for Vi, ¥i>n.
Therefore {¥y} is an r—Cauchy sequence in F. Thus we get {lim y,}3 7y in F. (Because F is r—complete.)
Therefore, for all #0, we get the following fact : "

)’Gvgclr (W) Sely (W) =cly (n+ U Scly (Uo+Us) (As 3 €+ Us S Up)

=cl, (%V(0)+';}‘V(O))_C_,cl,(V(O))=V(O) (Since V(0) is r—closed),
1. e, yEV(0).
Now, as _v,,—i—'_v in F(as n—>co) there exist {V,/ (M}, {Wa(MIEF(¥) such that for all #, 0<nwo,

8) Such’ SF has a structure as an extension of every locally convex, pseudo-metrizable and semi-normable
TVS. In general F is not pseudo-metrizable.

9) If we define a topology as a TVS in E by a system of neighborhoods with ranks, if E is complete
in the sense of ranked spaces ([5]) and if F is a pseudo-metrizable TVS, then E is 2nd Category ([5]).

Such E satisfies above condition (ii) (Kelley-Namioka [4]). Therefore Theorem 1 is an extension
of the theorem of Kelley—Namioka [4].

10) First countability axiom CE;Z (a*),
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Wa=ynt1+Un S TVa'(D+Ur'SE Wi(y) (Va!(y)Dyn+; for each n).
Hence, for all n, 0<n<lwq, we have
yn+1+Un+1=yn+1+71UnEyn+1+(%Un+%Un)_C.yn+1+Un=an Wa(y).
Thus we get
x€cly (f 1 (yn+1+Un ) Sl (1 (Wa(9))) for all n, 0<n<lawo.
Therefore we have the followings :
Axp™MELN(Wa (1), i e, f(Fxx™)E Wa(y) (for £=0,1,2,.. and each n, 0<n<awo,)
such that xk“’)—r—nv (as k—),
Thus there are {uk(”)(x)} EF(x) (U™ (%) D xx™) for each n, 0<n<wo.
Therefore we get o
(u™ (x) x Wa () N (the graph of f)2%¢(k=0,1,2,.. ; 7=0,1,2,...).
Now, by condition (a*) and the homogenity for E, we can pick out a fundamental sequence of (x, y)Ii;eSExF
{ttkcn>y™ (x) x Wy (y)} 012 (k (m)<lk(n+1))
from the family {ux™ (x)x Wa (y) | k= 0 1 2, ; 1=0,1,2,..}.
Therefore we have
(uk(n)("’(x)x War () N (the graph of f)x¢ for all n, 0<n<wo.
By assumption, the graph of f is r—closed set m ExF

Thus we get f(x)=y€eV(0)
and TEIOTRICAON
Therefore e (FIGV OIS FIV©) s proved.

(II).  Next, we will show that f is r~continuous on E. Let Yx€E and let {lim x,}3x in E.
n

From {lim x,}Dx in E, there exists {up (x)}EF(x) such that uy (x)3x, for all n, 0<n<wy. For any
n

{Va(W}EF; F), by (I), we have (-lr(f-‘( VaON S (Va(0)). Since Viy (O)——'VN (0) is a
neighborhood of 0 in F, using homogenity for E, we get that cl, (f71(V'¥(0))+x is a nelghborhood of
x in E. Now, by homogenity for F, since Va(f(x))=Vw~(0)+f(x) is a neighborhood of f(x) in F
we have {Va(f(x))}€F(F) and
cr (VX ON+2S VO +xS 1 VaO)+ f () =1 (Va (F(x)).
By (a*) there exists an m(N)€ N and we have
Tmw €umw (1) Selr (f LV N+ xS FH (Va(f(x))).
Hence f(x)EVN(f(x)) for all j=m(N).
Now, as f(xmn) EVa(f () 2VN+1(f(2))Df (xmev+1n) we set
Va(fF NSV (F )=V +1(f()) = Vw12 F (1)) = onee
""" =Vmawn+1an-1 (f (2)) 2 Vmews 1an (FO) = Va1 (F(x))
and m(N+1)=m(N)+I(N).
Then we have
S G+ 2) € Vaewy -0 (S () Tor all b, O PLI(N).
Hence there exists {V, (fGDIEF(f(x) 5 F) such that ¥, (f(x))Df(xn) for all 2, o< nlwo.
Thus we have
{lim Xn}dx in Eco{lim f(x)}D f(x) in F

and f is r—continuous on E, i

(III).  Finally, we will show that f is T-continuous on E. Let V(0) be an arbitrary neighborhood

of 0 in F. By (I) and (@), for a V'(0)E€B(0) in F we have

e (FH GV O S £V O) S 1 (V).



—100— Tomakomai Technical College

By assumption, cly (f™! (%V’(O))) is a neighborhood of 0 in E. Hence, by axiom (&), there exists v(0) €B(0)

in E such that DO Sel, (F1 (5 VOIS £ (V0.
Thus we have fw )= V().
Hence, F@O+x)=FfO))+f(x)ESV(0)+/(x) for cach xEE.

Therefore f is T-continuous on E.
This completes the proof of the generalized closed-graph theorem. (Q.E.D.)
Let {Fy, Bi™} be an mcneasmg sequence of llnCdl‘ ranked spaces such that every F, satishes the condition
(%) and every UG’tB—(l"Z’ (0) is r—closed and convex in each Fy. Then we have next theorem as a generalization
of Theorem 1.
Theorem 2. A linear mapping f of a linear ranked spuace E into an r-complete F*=2'Ln Fyois
r—continuous and T-continuous provided three conditions (i)—(iii) of Theorem 1 for E and F*,
Proof. For each U(0)€%B;(0) we have U(())—ﬂU‘ﬂ(O) and UD(0)€8,9°(0) (j=n). Moreover

Jjzn

for each {Ug ((J)} EF(O) we have Uy (())— NULD0) (k=0,1,2,...) and {Up(0)} E€F ;5 Fj).
k= /7&
Hence F* satisfies the Londltlon (). Thus we get this theorem by the method as is taken in the prool

for Theorem 1. (Q.E.D.)

$ 4. Examples of Linear Ranked Spaces.

Proposition 8. The following spaces are linear ranked spaces :

(a)  Pseudo-metrizable TVS (b)  (Semi-) Normed space

(¢) Countably normed spuce (d)  Dual (or union) space of countably normed
Spuce

(e) D, D, B, Dl (f)  Nuclear space and its dual

(g) Space of (E.R.) integrable functions (h)  Space with a system of semi—-norms

(1) LCTVS and its conjugate (j)  Inductive Iz‘mz'lmof LCTYV spaces

(k)  Fréchet space, Banach space, L F-space, Bornological space, Barrelled space, Montel space,
L. Hormander’s space F (2),..., etc

11) )
(1)  Inductive limit for each space in (k).

12) ) ) 13)
In fact, we get this proposition from the result in [12].  These spaces are included in the space F.
13)
Moreover (a*) and (¥%) are held for these spaces.
Definition 10. ([17). A netted space E is a LCTVS where exists a net ol subsets of £
Copony s ky Ny, HE=1,2,.0,
such that

(i) Cn e, are absolutely convex,

grest ven

(ii) E= Uﬁ'n Cn —U('n Rgreeey Cnoen. =Uey )
1 oy 2 1y P

7y oy
(il1) o every sequence 7x corresponds a sequence Zp >0 such that any series

Dk, fk€en wun
=1 1"
converges in E,

(iv)  a series of the preceding form is such that

oo o oo

v\_‘:lkfkeen , Xlkfkeen n ,-..,Zlkfkeen e N geee
1 172 1

k=1 k=2 k=p p .

11) These are locally convex (cf. [20], p. 28).

12) See On Generalized Continuous Groups 11, pp. 63-64. And replace < by <. Then, for ¥ 2(0) €SB, we
have cl,(2(0))=v(0)=v(0).

13) For (a) see Kelley—Namioka [4], p. 97.
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Proposition 9. Every metted space has a struature as a linear ranked.space. Thus every netted
space is included in the space F of Theorem 1.
Proof. Let E be a netted space defined by M. De Wilde.
We set  v(n, k; O)Em.
Cnyn, ...nk(O)Eﬁnoﬂenl...nk(O) (See H. G. Garnir (1], p. 368)

(Buno={f | BN = }(>0), Cupeen o 0FeZencon UOD,
max (#Ag,..., i) =n for any ny,.., nx, REN,
By (O F={vin k; 0) | RENY, Bo(0)={E}, Bu(HI=Br (0)+{f}(VSEE)
and Acv(n, k; 0)6‘3[1{_] 0) (n=0,1,2,...) for any 1€ ¢.
Then we have
gy (030 and g7y (O) ey g )26 1 (O) g (0) € Bz g p (O,
Axiom (a) is clear, Moreover we have

C’no e k(()) + Cmy e m l(o) [ 0710 ;;.I:A<O)7‘F0mo mz—(o) €3(0) and 2 - Z;ﬂ_nxae B(0) for

V{Xm} (Am—0) in @.

Moreover we have

Clr(e"o“"Lk(o))=e"0"‘"k(0{=e'lo“'"k(())‘
Thus E is a linear ranked space. (Q.E.D.)
Definition 11. ([10J). (i) A fhlter @ in a space E is said to be an S—filter if ® has a countable
basis {Sp} such that ﬁ Sn=¢.
n=1

(it) A filter @ in a linear space E is said to be an LS-filter if @ is generated by the complements
of all the finite union of linear subspaces £, (n=1,2,...) of E such that E=EJ°E,,.

(iii) A subset A of a linear space E is said to be linearly open ifnf;)xr any straight line L in E,
ENA is open in L by its usual topology.

(iv) A filter @ in a linear space E is called a P-filter if for every x in E there exists a linearly
open set A such that either A4 is disjoirl:t) from @ or @u, considered as a filter in E, is finer than an LS-filter.

Proposition 10. (1) If a spuce E has a sequence of S-filters ¢; (i=1,2,..) then E has a
structure as a ranked space with indicator wo.

(2)  1f a linear space E has a sequence of LS-filters ¢; (i=1,2,...) then E has a structure as
a linear ranked space.

(3)  If a linear space I has a sequence of P-filters @; (i=1,2,...) then E has a structure as
a linear ranked space.

Proof. (1). Suppose that each S-filter ¢; is generated by subsets S (k=1,2,...) such that
Iﬁl Sit=¢. We set, for each point pEE,

©o n
v(ps W= N SEDUBL B (DZ{0(h; M} (REN), Bo(p)Z{E).
Then {E, B,} fulfills the axioms (A), (B), (&) and (b). Hence E is a ranked space with indicator wo.
(2). Suppose that each LS-filter @; is generated by the complements of all the finite union of linear
subspaces £ (k=1,2,...) of E such that E= U ExD. We set, for each x€E,
k=1
<o n
v(0;s M= n kﬂEk<"’°+0, v(x;s WF 005 m+x, Ba(DE{v(x; )} MEN), Ro(W)={E).
i1 k-1

Then {E, By} fulfills the axiom (A), (B), (¢) and (b). Now, for any {un (0)}, {vn(Q)} € F(0)

14) Let A be a subset of a set E and ¢ a filter in £. We say that A is disjoint from ¢ if there is B
in ¢ such that ANB=9¢.



—102— Tomakomai Technical College

(un (0)E€Brnr (0), va (O)G‘Bs(n)(())) we lmve

oo r(

un(0)+vn(0)" ﬂ Ek‘”c+ ﬂl kﬂ I"L‘”“Cﬂ kﬂ FL“)C:W"(O)([(”) =Min {r(n), sGO})
- - 1 i=1k 1
and {wn (0)}E€F(0). Moreover, for any {Ax}Co (/ln—>0) and {u, (0)} € F(0), we have
o 7(n) o 7(n)
notn @=2n- N N Ekm”— n 0 Er =0, (0)(F{va(0)} € F(0)).
i1 ke

Therefore E is a linear ranked space. v
(8). For any x€E there exists a linearly open set A3x such that ¢;NA=¢ or Dia DDA
(i=1,2,3,..). We assume ¢; N A=¢ without losing generality, Let each @i/ be generated by the
complements of all the finite union of linear subspaces Ex® such that E-——U Er® (1=1,2,3,...).
We will give a rank for E by the method as is taken in (2). !
Then E becomes a linear ranked space. By using (1), (2) and (3) we can show this Proposition. (Q.E.D.)
M. Nakamura proved the following facts ([10]):
(1)  Netted spaces by M. De Wilde-H. G. Garnir =G N-spaces.
(2)  apfy-representable spaces by W. STowiskowski = GN-spaces,
(3)  Souslin spaces by A. Martineau-L. Schwartze=>K-Souslin spaces by A. Martineau & quasi-Souslin
spaces by M. Nakamura.
(4)  Spaces with nets of type P by M. De Wilde=> G-spaces.
Since G. M. -space, GN-space, quasi-Souslin space and G-space are defined by using L-covering or filters of
Definition 11, these spaces have the structures as the linear ranked spaces. Moreover these spaces hold the

condition (a*) and ().
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